首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 359 毫秒
1.
“对称”是解析几何中的常见问题 ,也是一种重要的思想方法 .本文旨在对解析几何中的点对称、轴对称问题进行整理 ,以供学生参考 .1 关于点的对称(1)点关于点的对称问题 ,通常我们是将其化为中点问题来解决 .例如 ,求点P(x ,y)关于点M (x0 ,y0 )的对称点P′的坐标 .设P′(x′ ,y′) ,由M为|PP′|的中点 ,得  x+x′2 =x0y+ y′2 =y0 x′ =2x0 -x ,y′=2 y0 - y ,即所求对称点的坐标为P′(2x0 -x ,2 y0 - y) .(2 )曲线关于点的对称问题 ,利用对称定义 ,结合求轨迹方程的代入法即可解决 .例如 ,求曲线C :f(x ,y) =0关于M (x0 ,y0 )对…  相似文献   

2.
近几年来,关于函数图像的切线问题,逐渐进入高考试卷,并在不断加大考查力度和与相关知识融合的力度,已经成为高考的热点.导数为这类问题的解决提供了新思路、新方法、新途径,拓宽了高考的命题空间.下同介绍高考切线问题的七种类型,并力求运用导数知识解决问题的主要思想方法,供复习参考.1求过一点的曲线的切线方程例1(2007年浙江省高考题)曲线y=x3-2x2-4x+2在点(1,-3)处的切线方程是.解显然点(1,-3)在曲线y=x3-2x2-4x+2上.因为y′=3x2-4x-4,所以y′│x=1=-5,因此所求切线方程为y+3=-5(x-1),即5x+y-2=0.例2(2006年全国高考题)过点(-1,0)作抛物线y=x2+x+1的切线,其中一条为().(A)2x+y+2=0(B)3x-y+3=0(C)x+y+1=0(D)x-y+1=0错解y′=2x+1,y′│x=-1=-1.故过点(-1,0)的抛物线的切线方程是y-0=-1(x+1),即x+y+1=0,所以选C.正解显然(-1,0)不在抛物线y=x2+x+1上.设切点坐标为P(x0,y0),则y0=x20+x0+1.过点P的切线方程是y-(x20+x0+1)=(2...  相似文献   

3.
在高二解析几何教材的圆锥曲线一章中有这样的一个结论 :若P(x0 ,y0 )是圆 :x2 + y2 =r2 上的一点 ,那么过该点的圆的切线方程是x0 x + y0 y =r2 .(证明见教材 ) .问题 :若点P(x0 ,y0 )在圆x2 + y2 =r2 外(或圆内 )时 ,直线l:x0 x + y0 y =r2 是什么样的直线 ?与圆x2 + y2 =r2 有什么关系 ?不妨设点P(x0 ,y0 )不在坐标轴上 .直线l:x0 x + y0 y =r2 的斜率是kl =-x0y0(y0 ≠ 0 ) ,而kOP =y0x0(x0 ≠ 0 ) .∵klkOP =-1,∴直线l⊥OP .圆心O(0 ,0 )到直线x0 x + y0 y=r2 的距离为d =r2x20 + y20=r2|OP|.①由①可见 ,直线l与圆的关系由|…  相似文献   

4.
在课堂教学研究无理型函数值域求法的过程中,我们遇上这么一个问题:求函数 22125245yxxxx=-+--+ 的值域. 这类问题的解决方法通常是构造应用两点间的距离公式,转化为动点到两定点的距离的和、差问题,再利用三角形不等式(两边之和大于第三边,两边之差小于第三边),求其最值. 分析 函数 22125245yxxxx=-+--+ 2222(6)(04)(2)(01)xx=-+---+- 即动点(,0)Px到定点(6,4)A的距离与点P到定点(2,1)B的距离的差的取值范围. 由右图数形结合 知,当点P为直线AB 与x轴的交点时, y取 得最大值,直线AB的 方程为1y-=3(x- 2)/4,令0y=, 解得x=2/3.即2/3x=…  相似文献   

5.
对称问题是高中数学中比较重要的内容,它的一般解题步骤是:一、在所求曲线上选一点M(x,y);二、求出这点关于中心或轴的对称点M′(x0,y0)与M(x,y)之间的关系;三、利用f(x0,y0)=0求出曲线g(x,y)=0.直线关于直线对称的问题是对称问题中较难的,但它的解法很多,现以一道典型习题为例给出几种常见解法,供同学们参考.[例题]:试求直线l1:x+y-1=0关于直线l2:3x-y-3=0对称的直线l的方程.解法1:(动点转移法)在l1上任取点P(x′,y′)(P!l2),设点P关于l2的对称点为Q(x,y),则3x′2+x-y′2+y-3=0y′-yx′-x=-13"$$$$#$$$$%&x′=-4x+53y+9y′=3x+54y-3"$$$…  相似文献   

6.
本文介绍曲线Ax2+By2=C(AB≠0)的一条有趣性质,并以高考题为例说明其应用.1曲线的性质定理设曲线Ax2+By2=C(AB≠0)与直线P1P2相交于P1(x1,y1)、P2(x2,y2)两点,P为线段P1P2的中点,若直线P1P2、OP的斜率分别为k、m,则A+kmB=0.证明设P(x0,y0),则x1+x2=2x0,y1+y2=2y0,且xy00=1m.因为P1(x1,y1)、P2(x2,y2)两点在曲线上,所以Ax21+By12=C,Ax22+By22=C.两式相减并整理,得A(x1-x2)x0+B(y1-y2)y0=0,由题意知x1≠x2,则有y1-y2x1-x2=-AByx00,即k=-mAB,所以A+kmB=0.2性质的应用2·1求圆锥曲线的离心率例1(2005年全国高考题)已知椭圆的中…  相似文献   

7.
<正>在平面内,已知点P(x_0,y_0),直线l:Ax+By+C=0,则点P到直线l的距离公式d=|Ax-By+C|/(A2+B2+B2)2)(1/2)。解析几何中的轨迹问题、最值问题、曲线与直线的位置关系等都与点到直线的距离有关。因此,应用点到直线的距离公式能够解决许多重要问题。一、求轨迹方程例1求两条直线l_1:3x+4y+1=0,l_2:5x+12y-1=0的交角平分线方程。  相似文献   

8.
本文介绍直线方程的一种/另类0求法及解题中的广泛应用.如果P(x1,y1),Q(x2,y2)两点坐标满足:Ax1+By 1+C=0,A x 2+By 2+C=0,说明P(x1,y1),Q(x2,y2)两点都在直线A x+By+C=0上,因为两点确定一条直线,所以直线PQ的方程为:Ax+By+C=0,这给出了求直线方程的一种新方法,应用这种方法,能使许多棘手的解析几何问题得到简捷地解决,下面举例说明.例1过点M(4,2)作x轴的平行线被抛物线C:x2=2py(p>0)截得的弦长为4 2.  相似文献   

9.
一、利用距离公式例1已知x+y+1=0,则u=(x-1)2+(y-12姨)的最小值为.解如图1所示,如果将u=(x-1)2+(y-1)2看姨成是P(x,y)与B(1,1)两点间的距离,由于点P(x,y)的坐标满足x+y+1=0,所以u的最小值也就是点B(1,1)到直线x+y+1=0的距离,所以um=1+1+13姨2in=.姨22二、利用直线斜率公式例2实数x,y满足(x-2)2+y2=3,求y的最大值.x解如图2所示,设点P(x,y)为圆(x-2)2+y2=3上任一点,则y为直线O P的x斜率k.易求得km=3,ax姨即y的最大值为姨3.x三、利用单位圆例3已知sin(θ+π)<0,cos(θ-π)>0,则下列不等关系中必定成立的是A.tancosθθ2222C.…  相似文献   

10.
曲线C在点P(x0,y0)曲率圆是与该曲线C相切于点P(x0,y0)(凹侧)的最大圆,曲率圆的圆心D的轨迹曲线G称为曲线G的渐屈线.抛物线y2=2px(p>0)、椭圆x2/a2+y2/b2=1和双曲线x2/a2-y2/b2=1的渐屈线方程分别为y2=8/27P(x-p)3、x3/(c2/a2/3=1和x3/(c2/a2/3-y3/(c2/b)2/3=1.抛物线、椭圆和双曲线的最小曲率圆都是它们的内切圆,其方程分别为(x-P)2+y2=p2、(x±c2/a)2+y2=b4、(x±c2/a)2+y2=b4/a2.  相似文献   

11.
函数y=f(x)在点x0处的导数的几何意义就是曲线y=f(x)在点P(x0,y0)处的切线的斜率.导数的几何意义把函数的导数与曲线的切线联系在一起,使导数成为函数知识与解析几何知识交汇的一个重要载体.因此,用导数解决与切线有关的问题将是高考命题的一个热点.下面分类解析导数几何  相似文献   

12.
一、解决函数问题例1.求函数y=x-1-2x√的值域.解:由函数解析式易知,此函数定义域为x≤12.令y1=x,y2=-1-2x√,由图1可知,当x=12时,ymax=12,故所求值域为(-∞,12).〔评注〕函数的图象是函数对应规律的几何表示,能直观地反映函数的性质,是解决函数问题的有力工具。其关键是把函数的性质与图象的性质结合起来,即数形结合。二、解决解析几何问题例2.已知x2+4y2=4(x-4)2+y2=r2 表示两曲线有公共点,求r的最值.解:将方程x2+4y2=4化为标准式x222+y2=1,它表示中心在0(0,0),长半轴为2在X轴上,短半轴为1在y轴上的椭圆.方程(x-4)2+y2=r2表示圆心在A(4,0…  相似文献   

13.
构造是一种重要的数学思想 ,在数学解题教学中 ,教师应注意引导学生依据题目特征 ,类比相关知识 ,通过相关数学模型来促使问题的解决 .本文利用直线与圆有关常用数学模型求解一类数学题 ,供参考 .1 利用点到直线的距离公式解题设 A(x0 ,y0 ) ,直线 l:Ax + By+ C=0 ,则 A到 l的距离 d=| Ax0 + By0 + C|A2 + B2 .例 1 已知实数 a,b满足 a+ b=1.求证 :(a-3) 2 + (b+ 4 ) 2 ≥ 2 .图 1证明 不等式左端可视为点 P(a,b)到点 Q(3,- 4)的距离的平方 ,而点 P(a,b)可看作直线 l:x+ y=1上的任意一点 ,于是问题转化为点 P在直线l上什么位置时线…  相似文献   

14.
以下是2003年高考数学(新课程卷)的一道试题. 题目设a>0,f(x)=ax2 bx c.曲线y=f(x)在点P(x0,f(x0))处切线的倾斜角的取值范围为[0,π/4],则点P到曲线y=f(x)对称轴的距离的取值范围为( ).  相似文献   

15.
数学问题考查的不仅仅是同学们的数学思维能力,同时也考查同学们对数学语言的理解能力,即对题目给出的数学语言怎样理解,理解后怎样转化为熟悉的数学问题并进行解决的能力.所以做数学题目时,在理解数学语言上要“咬文嚼字”.下面举几个例子说明.“咬文嚼字”一“过”和“在”不同【例1】曲线y=x3+x+1过点(1,3)处的切线方程是.错解切线的斜率为y′|x=1=(3x2+1)|x=1=4,故所求的切线方程是y=4(x-1)+3,即4x-y-1=0.剖析“过”点(1,3)的切线方程,说明(1,3)不一定是切点,这时切线可能不只一条.就必须通过设切点来求.设切点坐标为(x0,y0),对y=x3+x+1求导得y′=3x2+1,故切线的斜率为3x02+1,于是切线方程为y=(3x02+1)(x-x0)+y0,由于点(1,3)在切线上,故有3=(3x02+1)(1-x0)+y0①又切点在曲线上,即y0=x03+x0+1②解①②得x0=1y0=3或x0=-21.y0=83当x0=1y0=3时,切线斜率为4,方程为4x-y-1=0;当x0=-21y0=83时,切线斜率为47,方程为7x-4y+5=0.错解是求曲线y=x3+x+1在点(...  相似文献   

16.
在学习了点到直线距离公式后 ,总觉得课本上对这一公式的证明比较繁琐 .其实 ,这一公式还有多种证法 .设P(x0 ,y0) ,L :方程Ax +By+C =0(A ,B不同时为零 )当A =0或B =0时公式显然成立 ,因此 ,这里只证明A ≠ 0 ,B≠ 0时的情况 .已知 :P(x0 ,y0 ) ,L :Ax+By +C =0(A ≠ 0 ,B ≠ 0 ) ,求证 :P到L的距离d =|Ax0 +By0 +C|A2 +B2 .证法一 :过P点作L的垂线交L于Q(x1 ,y1 ) ,则kPQ =BA∴ x1 -x0y1 -y0=AB ①∵Ax1 +By1 +C =0 ,∴将其变形为A(x1 -x0 ) +B(y1 -y0 )=-(Ax0 +By0 +C) ②联立①②得 :x1 -x0 =-A(Ax0 +By0 +C)A2 +…  相似文献   

17.
求曲线的切线方程是导数的重要应用之一,用导数求切线方程的关键在于求出切点P(x0,y0)及斜率,其求法为:设P(x0,y0)是曲线y=f(x)上的一点,则以P为切点的切线方程为:y-y0=f’(x0)(x-x0).若曲线y=f(x)在点P(x0,f(x0))的切线平行于y轴(即导数不存在)时,由切线定义知,切线方程为x=x0.  相似文献   

18.
定理:过圆锥曲线Φ:Φ(x,y)=Ax2+Bxy+Cy2+Dx+Ey+F=0(A+C≠0)上的一定点P0(x0,y0)引两条互相垂直的弦P0P1、P0P2,则直角弦过定点N(xo-ΦA+C,y0-ΦA+C),分别以P0P1与P0P2为直径的两圆交点的轨迹方程是:[x-x0+Φ2(A+C)]2+[y-yo+Φ22(A+C)]2=Φ21+Φ224(A+C)2.其中Φ1=Φ1x=2Axo+Byo+D,Φ2=Φ1y=Bxo+2Cyo+E.证明:作平移变换x=x'+x0,y=y'+y0,因P0(x0,y0)在曲线上,所以Ax20+Bx0y0+F=0,曲线Φ的方程变为:Ax'2+Bx'y'+Cy'2+(2Axo+Byo+D)x'+(Bxo+2Cyo+E)y'〕=0(1)设角弦P1P2的方程为Px'+qy'=1(2)由(1)、(2)式构造齐次方程,得Ax'2…  相似文献   

19.
概念: (1)曲线C上的点的坐标都是方程f(x,y)=0的解; (2)以方程f(x,y)=0的解为坐标的点都是曲线C上的点, 称方程f(x,y)=0为曲线C的方程.充分利用曲线与方程的关系,可简化问题的求解. 例1 过点P(-1,1),作直线与椭圆x2/4+y2/2=1交于A、B两点,若线段AB的中点恰  相似文献   

20.
某些类似于直线形式或定比分点坐标公式形式的问题上 ,也能巧妙地利用定比分点坐标公式去解决 ,从而获得一种全新的解题理念 .1.用在一些函数值域和不等式的解答问题上【例 1】 求函数y=1+cosx3-2cosx的最值 .解 :类比x=x1+λx21+λ则y=13+ ( -23cosx) ( -12 )1+ ( -23cosx),令“直线”上三点A( 13,0 )、B( -12 ,0 )、C(y ,0 ) ,则λ =-23cosx ,知 :-23≤λ≤23,当λ =-23时 ,y =13+ ( -23) ( -12 )1+ ( -23)=2 ;当λ =23时 ,y =13+ 23( -12 )1+ 23=0 ,所以ymax =2 ,ymin =0【例 2】 求函数y=2x21+x2 的值域解 :y =2x21 +x2 =0 +x2 · 2…  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号