首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
一、借用方程解三角函数求角题把角视为“元”,关键是建立以角为元的三角方程,然后解此方程.例1已知α缀(0,仔),β缀(0,仔),cosα+cosβ-cos(α+β)=32,求α,β.解析(解法一)本题难点在于用一个等式如何求出两个未知量.用方程的观点去分析,通过配方,利用平方数性质,可得一个方程组.由cosα+cosβ-cos(α+β)=32,得2cosα+β2cosα-β2-2cos2α+β2+1=32,即4cos2α+β2-4cosα+β2cosα-β2+1=0,配方得(2cosα+β2-cosα-β2)2+sin2α-β2=0,∴sinα-β2=0,①2cosα+β2-cosα-β2=0.②由①式结合α缀(0,仔),β缀(0,仔),得α=β.代入②式得co…  相似文献   

2.
向量作为一种工具在解题中的应用极广,巧用公式a·b≤a·b解题,方法新颖、运算简捷.本文举例说明该公式的应用.1在求值中的应用例1若α,β∈(0,π),求满足等式cosα+cosβ-cos(α+β)=23的α,β的值.解原等式可化为(1-cosβ)cosα+sinβsinα=32-cosβ.构造向量a=(1-cosβ,sinβ),b=(cosα,sinα),则a·b=(1-cosβ)2+sin2β·cos2α+sin2α=2-2cosβ,a·b=(1-cosβ)cosα+sinβsinα=32-cosβ.因为(a·b)2≤a2b2,所以(23-cosβ)2≤2-2cosβ,即(cosβ-12)2≤0,所以cosβ=21,β=3π.又α,β地位相同,故α=3π,即α=β=3π.2在求最值和值域中的…  相似文献   

3.
三角函数是高中数学的重要组成部分,其中许多问题的解决均涉及到基本能力的考查,大家在解题时,往往只知道套用一系列公式,因而计算烦琐,思想方法单一而且死板.其实这种现象是对基本数学思想把握不够造成的.在三角函数中,若使用方程(函数)思想解决求值、证明及研究三角函数性质等问题,会收到事半功倍的效果.本文列举几例,供同学们参考.例1已知sin(α+β)=12,sin(α-β)=13,求tanαcotβ的值.分析:先“切化弦”,得tanαcotβ=csionsααcsoinsββ,构造关于sinαcosβ、cosαsinβ的方程组,整体求值.解:由sin(α+β)=12,得sinαcosβ+cosαsin…  相似文献   

4.
一、“给值求值”时将“待求角”用“条件角”表示例1 已知cos(α-β)=-4/5,cos(α+β)=4/5,且α-β∈(π/2,π),α+β∈(3π/1,2π),求cos2α. 解:由已知求得sin(α-β)=3/5,sin(α+β)=-3/5.又2α=(α-β)+(α+β),所以cos2α=cos(α-β)cos(α+β)-sin(α-β)sin(α+β)·代入已知数据得cos2α=-7/25. 练一练已知sin(π/4-α)=5/13(0<α<π/4),求cos2α/(?)的值.  相似文献   

5.
公式“sin2α+cos2α=1”是高中三角函数问题中一个十分重要的公式,它是同角三角函数基本关系式之一,具有十分广泛的应用.在解决三角问题时,如能活用该公式,充分挖掘其潜在功能,往往可以推陈出新,给人以耳目一新的感觉.一、三角函数式的化简例1化简1-sin6α-cos6αsin2α-sin4α.解1-sin6α-cos6αsin2α-sin4α=1sin2αcos2α-sin2α+cos2αsin2αcos2α×(sin2α+cos2α)2-3sin2αcos2αsin2αcos2α=1-(1-3sin2αcos2α)sin2αcos2α=3.二、用公式求值例2已知sinθ+cosθ=15,θ(0,π),则cotθ=_____.解∵sin2θ+cos2θ=1,∴(sinθ+cos…  相似文献   

6.
有些三角问题,初接触时往往感到无从下手,此时,如果能巧妙地设出参数,则可以使问题出奇制胜地得以解决.现举数例说明,供同学们参考.一、求三角函数值例1设sinα+3cosα=2,求sinα-cosαsinα+cosα值.分析:此题若条件与sin2α+cos2α=1联立,求得sinα,cosα值,再代入计算,则过程较繁.可设sinα-cosαsinα+cosα=k,只须求出k的值即可.解:设sinα-cosαsinα+cosα=k,与sinα+3cosα=2联立得:sinα=1+k2-k,cosα=1-k2-k(k≠2)由sin2α+cos2α=1得:(1+k2-k)2+(1-k2-k)2=1即k2+4k-2=0解得k=-2±6.∴原式=-2±6.例2求sin220°+cos280°+3sin20°…  相似文献   

7.
一、问题的提出 看这样一个数学问题:若sinαcosβ=1/2,求cosαsinβ的取值范围. 一个典型的错误解法是: 解:因为sin(α+β)=(sinαcosβ+cosαsinβ)∈[-1,1],sinαcosβ=1/2,所以-3/2≤cosαsinβ≤1/2. 它的错误原因在于找到的约束条件不全面,仅考虑了-1≤sin(α+β)≤1.许多参考书上给出的正确的解法是: 解:因为sin(α+β)=(sinαcosβ+cosαsinβ)∈[-1,1],sinαcosβ=1/2,所以-3/2≤cosαsinβ≤1/2, 因为sin(α-β)=sinαcosβ-cosαsinβ=(1-cosαsinβ) ∈[-1,1].  相似文献   

8.
三角恒等变形,公式繁多,技巧性强,不易熟练掌握.但如果在“变”字上下功夫,常可抓住关键,找到解题途径.一、变角对已知角进行和、差、倍、半角等各种形式的合理变换,有利于某些三角函数化简求值.例1(1997年高考题)sin7°+cos15°sin8°cos7°+sin15°sin8°的值为.解:由7°=15°-8°,利用差角正弦和余弦公式,化简得原式=sin15°cos15°=1-cos30°sin30°=2-3.练习(1992年高考题)已知π2<β<α<3π4,cos(α-β)=1213,sin(α+β)=-35,求sin2α的值.二、变项对于某些三角函数化简,求值问题,若添项或拆项等,则往往能一举成功.例2(1994年高考题)…  相似文献   

9.
许多三角最值问题,若用构造法求解,可使复杂问题简捷获解.这样不仅有利于数学思想的运用,而且有利于培养创新意识和创新能力.根据题设条件的特征,恰当构造一种新形式是灵活运用此法的关键,本文举例介绍几种方法.一、构造对偶式,用整体思想例1已知sin2α+sin2β+sin2γ=34,试求sin2α+sin2β+sin2γ的最大值.解:由sin2α+sin2β+sin2γ=34可得cos2α+cos2β+cos2γ=32.(1)构造对偶式sin2α+sin2β+sin2γ=x,(2)(1)2+(2)2得94+x2=3+2[cos(2α-2β)+cos(2β-2γ)+cos(2α-2γ)]≤3+2×3=9,其中等号可以在例如α=β=γ=π6时成立.∴x2≤274,|x|…  相似文献   

10.
向量是近代数学中重要和基本的数学概念之一.它是沟通代数、几何、三角函数的一种工具.以下针对向量在三角函数的图象与性质方面的应用作一简单的介绍,体现向量在三角函数中的工具作用.一、求值例1已知△ABC的三个顶点A(3,0)、B(0,3)、C(cosα,sinα),其中π2<α<3π2.(1)若|AC→|=|BC→|,求α的值;(2)若AC→·BC→=-1,求cosα-sinα的值.解:(1)AC→=(cosα-3,sinα),BC→=(cosα,sinα-3).由|AC→|=|BC→|,有(cosα-3)2 sin2α=cos2α (sinα-3)2,整理得sinα=cosα,tanα=1.又因为π2<α<3π2,所以α=5π4.(2)因为AC→·BC→=-…  相似文献   

11.
具有圆的几何意义的数学问题,如能构造出该圆,那么问题便会迎刃而解,请看: 一、求值例1 已知sinα+sinβ+sinγ=0,cosα+cosβ+cosγ=0,求cos2α+cos2β+cos2γ的值. 解:构造一直角坐标系,设三点P(cosα,sinα)、Q(cosβ,sinβ)、R(cosγ,sinγ),由给  相似文献   

12.
本刊91年第1期《三角函数式的恒等变换与应用》一文的一例及其解答如下: 例12 已知(tg(α+β-γ))/(tg(α-β+γ))=tgγ/tgβ,求证sin2α+sin2β+sin2γ=0 证明:把已知化为 (sin(α+β-γ)cos(α+β-γ))/(cos(α+β-γ)sin(α+β-γ))=sinγcosβ/cosγsinβ由合分比定理,化简得 (sin2α)/(sin2(β-γ))=(sin(γ+β))/(sin(γ-β))  相似文献   

13.
性质 若 sinα与 cosα的一次齐次式asinα+ bcosα满足 asinα1 + bcosα1 =asinα2+ bcosα2 =0 (α1 ≠ kπ+α2 ,k∈ Z) ,则 asinα+bcosα恒等于零 .证明 由条件 asinα1 + bcosα1 =0 ,asinα2 + bcosα2 =0 ,∵α1 -α2 ≠ kπ( k∈ Z) ,∴ sinα1 cosα2 - cosα1 sinα2 =sin( α1 - α2 )≠ 0 ,∴上述关于 a,b的齐次线性方程组只有零解 a=b=0 ,∴ asinα+bcosα恒等于零 .利用上述性质 ,可以使一类三角函数式的求值、化简、证明问题 ,获得简明的解法 ,下面略举几例 ,以示说明 .例 1 求证 :sin( 5π6 - φ) + sin( 5π6 + φ) …  相似文献   

14.
对于某些三角问题 ,若能合理地构造向量 ,利用向量来解 ,往往可使问题得到快捷方便地解决 ,下面举例说明 .一、求角度【例 1】 若α、β∈ ( 0 ,2 ) ,求满足cosα+cosβ-cos(α + β) =32 的α ,β的值 .解 :原等式化为( 1 -cosβ)cosα+sinβsinα =32 -cosβ ①构造向量a =( 1 -cosβ ,sinβ) ,b =(cosα ,sinα) ,则a·b =( 1 -cosβ)cosα+sinβsinα=32 -cosβ ,|a|·|b|= ( 1 -cosβ) 2 +sin2 β· cos2 α+sin2 α= 2 -2cosβ因 (a·b) 2 ≤|a|2 ·|b|2 ,于是有 ( 32 -cosβ) 2 ≤ 2 -2cosβ整理得 (cosβ-12 ) 2 ≤ 0 ,∴c…  相似文献   

15.
解析几何的本质是用代数方法研究几何问题,而三角可以实现几何特征与代数运算的有效转化,因此解析几何中的三角问题俯拾即是:一、以三角为工具,用三角的一整套变换公式,求解圆锥曲线的特征变量【例1】设P是椭圆x2a2+y2b2=1(a>b>0)上任意一点,F1、F2是椭圆的焦点,∠PF1F2=α,∠PF2F1=β,求椭圆的离心率e.解:由正弦定理得|PF1|sinβ=|PF2|sinα=|F1F2|sin(π-α-β),∴|PF1|+|PF2|sinα+sinβ=|F1F2|sin(α+β),即2asinα+sinβ=2csin(α+β),而e=ca,∴e=sin(α+β)sinα+sinβ=2sinα+β2cosα+β22sinα+β2cosα-β2=cosα+β2cos…  相似文献   

16.
有这样一道习题:已知sin2a+sinβ+cos(α-β)=2,求sina+sinβ的取值范围. 错解:令u=sinα+sinβ,则u2=sin2α+sin2β+2sinαsinβ又sin2α+sin2β+cos(α-β)=2,所以U2-2=2sinαsinβ-cos(α-β)=-cos(α+β).u2=2-cos(α+β),从而1≤u2≤3,解得-3~(1/2)≤u≤一1或1≤u≤3~(1/2). 这个答案看起来似乎简洁明了,分析透彻,但细细分析便会产生这样的疑问,即cos(α+β)能取[一1,1]上的所有值吗?  相似文献   

17.
如果xR,那么|sinx|≤1,|cosx|≤1,这是三角函数中一个应用广泛的重要性质,恰当运用可以使解题过程简捷流畅;反之,忽视正、余弦函数的有界性这一隐含条件,则使同学们在解题过程中经常出现错误.下面结合实例介绍它的解题功能.一、求角度例1已知6sin3β-cos22α=6,求α,β.解原方程变形为6(sin3β-1)=cos22α,则有6×(sin3β-1)≥0,即sin3β≥1.∵|sin3β|≤1,∴sin3β=1,3β=2kπ+π2,即β=23kπ+π6(kZ).此时cos2α=0,2α=kπ+π2,即α=12kπ+π4(kZ).评注等式中含有两个未知数,如果不从正弦函数的有界性中挖掘出隐含条件寻找…  相似文献   

18.
问题已知关于x的方程x2-kx+k+1=0的两个根为sinθ和cosθ,求实数k的值. 解法1 由二次方程根与系数的关系,得 { sin θ+cos θ=k,sin θcos θ=k+1. 而 (sin θ+cos θ)2=1+2sin θcosθ, 所以 k2=1+2(k+1), 即 k2-2k-3=0, k=3或k=-1. 思考 以上解法对吗?给足思考时间,引导学生积极互动、广泛交流、不断思考,终于明白是非.以上解法中得出的k值是否满足△≥0?要检验!  相似文献   

19.
一、三角函数取值范围的方程求法我们知道在sin~2a+cos~2α=·1中,运用换元,令cosα=x,sinα=y,就是x~2+y2=1.这样就可把求t=F(cosα,sinα)的范围化为在方程组{x~2+y~2}=1F(x,y)=t},中求t的取值范围.例1已知sinαcosβ=1/2,求t=cosαsi的取值范围.解令cosα=x,sinα=y,cosβ=m,sinβ=n,得方程组(?)消去m,n,y(过程略)得4x~4-(4t~2+3)x~2+4t~2=0(0≤x~2≤1)⑤在⑤中解出t~2求值域或解出x~2求定义域或用二次方程实根的分布方法可得0≤t2≤1/4,所以一1/2≤t≤1/2.例2已知sinα+sinβ=1,求t=cosαt+cosβ的取值  相似文献   

20.
一、求角的范围例1若sinθ cosθ >0,则θ在()A.第一、二象限B.第一、三象限C.第一、四象限D.第二、四象限解∵sinθcosθ>0,∴sinθcosθsin2θ+cos2θ>0,∴tanθtan2θ+1>0,∴tanθ >0.选B.二、求值例2已知tan(π4+α)=2,求12sinαcosα+cos2α的值.解∵tan(α +π 4)=2,∴1+tanα1-tanα =2,tanα=1 3.∴ 12sinα cosα +cos2α=sin2α +cos2α2sinα cosα +cos2α=tan2α +12tanα +1=2 3.例3已知6sin2α+sinαcosα-2cos2α=0,α 缀[π2,π],求sin(2α+π3)的值.解显然cosα≠0,∴原条件可化为6tan2α+tanα-2=0,解得tanα=-2…  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号