首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 500 毫秒
1.
On the one hand, lensless imaging technology has become one of the key technologies to achieve point-of-care testing; on the other hand, microfluidic technology has shown great application potential in the field of biological detection. Using mainstream lensless imaging technology to achieve biological cell imaging in microfluidic chips has technical limitations. In particular, it is more difficult to achieve lensless imaging for non-spherical cells in microfluidic chips such as red blood cells. Achieving red blood cell recognition and posture estimation in a microfluidic chip under the lensless imaging, combined with mainstream lensless imaging technology, can provide more effective red blood cell morphological parameters for medical diagnosis. In this paper, the method for red blood cell recognition and posture estimation in microfluidic chips based on lensless imaging is given. First, the relevant theoretical basis is introduced. Then, the models of red blood cell recognition and posture estimation in microfluidic chips based on lensless imaging are given. The effect of red blood cell flipping on lensless imaging is analyzed in the modeling process. Finally, the effectiveness of the proposed method is verified by experiments. Experiments show that the proposed method can well achieve red blood cell recognition and posture estimation through the shape characteristics of red blood cells.  相似文献   

2.
Wu HW  Lin CC  Lee GB 《Biomicrofluidics》2011,5(1):13401
Microfluidic techniques have been recently developed for cell-based assays. In microfluidic systems, the objective is for these microenvironments to mimic in vivo surroundings. With advantageous characteristics such as optical transparency and the capability for automating protocols, different types of cells can be cultured, screened, and monitored in real time to systematically investigate their morphology and functions under well-controlled microenvironments in response to various stimuli. Recently, the study of stem cells using microfluidic platforms has attracted considerable interest. Even though stem cells have been studied extensively using bench-top systems, an understanding of their behavior in in vivo-like microenvironments which stimulate cell proliferation and differentiation is still lacking. In this paper, recent cell studies using microfluidic systems are first introduced. The various miniature systems for cell culture, sorting and isolation, and stimulation are then systematically reviewed. The main focus of this review is on papers published in recent years studying stem cells by using microfluidic technology. This review aims to provide experts in microfluidics an overview of various microfluidic systems for stem cell research.  相似文献   

3.
Cell-cell interactions play a key role in regeneration, differentiation, and basic tissue function taking place under physiological shear forces. However, current solutions to mimic such interactions by micro-patterning cells within microfluidic devices have low resolution, high fabrication complexity, and are limited to one or two cell types. Here, we present a microfluidic platform capable of laminar patterning of any biotin-labeled peptide using streptavidin-based surface chemistry. The design permits the generation of arbitrary cell patterns from heterogeneous mixtures in microfluidic devices. We demonstrate the robust co-patterning of α-CD24, α-ASGPR-1, and α-Tie2 antibodies for rapid isolation and co-patterning of mixtures of hepatocytes and endothelial cells. In addition to one-step isolation and patterning, our design permits step-wise patterning of multiple cell types and empty spaces to create complex cellular geometries in vitro. In conclusion, we developed a microfluidic device that permits the generation of perfusable tissue-like patterns in microfluidic devices by directly injecting complex cell mixtures such as differentiated stem cells or tissue digests with minimal sample preparation.  相似文献   

4.
This paper presents a microfluidic device (poly-dimethylsiloxane micro channels bonded with glass slides) enabling culture of MLO-Y4 osteocyte like cells. In this study, on-chip collagen coating, cell seeding and culture, as well as staining were demonstrated in a tubing-free manner where gravity was used as the driving force for liquid transportation. MLO-Y4 cells were cultured in microfluidic channels with and without collagen coating where cellular images in a time sequence were taken and analyzed, confirming the positive effect of collagen coating on phenotype maintaining of MLO-Y4 cells. The proliferating cell nuclear antigen based proliferation assay was used to study cellular proliferation, revealing a higher proliferation rate of MLO-Y4 cells seeded in microfluidic channels without collagen coating compared to the substrates coated with collagen. Furthermore, the effects of channel dimensions (variations in width and height) on the viability of MLO-Y4 cells were explored based on the Calcein-AM and propidium iodide based live/dead assay and the Hoechst 33258 based apoptosis assay, locating the correlation between the decrease in channel width or height and the decrease in cell viability. As a platform technology, this microfluidic device may function as a new cell culture model enabling studies of osteocytes.  相似文献   

5.
Biomicrofluidics is an emerging field at the cross roads of microfluidics and life sciences which requires intensive research efforts in terms of introducing appropriate designs, production techniques, and analysis. The ultimate goal is to deliver innovative and cost-effective microfluidic devices to biotech, biomedical, and pharmaceutical industries. Therefore, creating an in-depth understanding of the transport phenomena of cells and biomolecules becomes vital and concurrently poses significant challenges. The present article outlines the recent advancements in diffusion phenomena of cells and biomolecules by highlighting transport principles from an engineering perspective, cell responses in microfluidic devices with emphases on diffusion- and flow-based microfluidic gradient platforms, macroscopic and microscopic approaches for investigating the diffusion phenomena of biomolecules, microfluidic platforms for the delivery of these molecules, as well as the state of the art in biological applications of mammalian cell responses and diffusion of biomolecules.  相似文献   

6.
This review article presents how microfluidic technologies and biological materials are paired to assist in the development of low cost, green energy fuel cell systems. Miniaturized biological fuel cells, employing enzymes or microorganisms as biocatalysts in an environmentally benign configuration, can become an attractive candidate for small-scale power source applications such as biological sensors, implantable medical devices, and portable electronics. State-of-the-art biofuel cell technologies are reviewed with emphasis on microfabrication compatibility and microfluidic fuel cell designs. Integrated microfluidic biofuel cell prototypes are examined with comparisons of their performance achievements and fabrication methods. The technical challenges for further developments and the potential research opportunities for practical cell designs are discussed.  相似文献   

7.
Embryonic stem (ES) cells are capable of proliferating and differentiating to form cells of the three embryonic germ layers, namely, endoderm, mesoderm, and ectoderm. The utilization of human ES cell derivatives requires the ability to direct differentiation to specific lineages in defined, efficient, and scalable systems. Better markers are needed to identify early differentiation. Lectins have been reported as an attractive alternative to the common stem cell markers. They have been used to identify, characterize, and isolate various cell subpopulations on the basis of the presentation of specific carbohydrate groups on the cell surface. This article demonstrates how simple adhesion assays in lectin-coated microfluidic channels can provide key information on the interaction of lectins with ES and definitive endoderm cells and thereby track early differentiation. The microfluidic approach incorporates both binding strength and cell surface receptor density, whereas traditional flow cytometry only incorporates the latter. Both approaches are examined and shown to be complementary with the microfluidic approach providing more biologically relevant information.  相似文献   

8.
Chang YW  He P  Marquez SM  Cheng Z 《Biomicrofluidics》2012,6(2):24118-241189
This paper reports the use of microfluidic approaches for the fabrication of yeastosomes (yeast-celloidosomes) based on self-assembly of yeast cells onto liquid-solid or liquid-gas interfaces. Precise control over fluidic flows in droplet- and bubble-forming microfluidic devices allows production of monodispersed, size-selected templates. The general strategy to organize and assemble living cells is to tune electrostatic attractions between the template (gel or gas core) and the cells via surface charging. Layer-by-Layer (LbL) polyelectrolyte deposition was employed to invert or enhance charges of solid surfaces. We demonstrated the ability to produce high-quality, monolayer-shelled yeastosome structures under proper conditions when sufficient electrostatic driving forces are present. The combination of microfluidic fabrication with cell self-assembly enables a versatile platform for designing synthetic hierarchy bio-structures.  相似文献   

9.
The physiology of vascular endothelial cells is strongly affected by fluid shear stress on their surface. In this study, a microfluidic assay was employed to analyze the alignment of actin filaments in endothelial cells in response to shear stress. When cells were cultured in microfluidic channels and subjected to shear stress, the alignment of filaments in the channel direction was significantly higher than in static cultures. By adding inhibitory drugs, the roles of several signaling proteins in the process of alignment were determined. Thus, it is shown how microfluidic technology can be employed to provide a mechanistic insight into cell physiology.  相似文献   

10.
Li J  Zhu L  Zhang M  Lin F 《Biomicrofluidics》2012,6(2):24121-2412113
Cell migration is involved in physiological processes such as wound healing, host defense, and cancer metastasis. The movement of various cell types can be directed by chemical gradients (i.e., chemotaxis). In addition to chemotaxis, many cell types can respond to direct current electric fields (dcEF) by migrating to either the cathode or the anode of the field (i.e., electrotaxis). In tissues, physiological chemical gradients and dcEF can potentially co-exist and the two guiding mechanisms may direct cell migration in a coordinated manner. Recently, microfluidic devices that can precisely configure chemical gradients or dcEF have been increasingly developed and used for chemotaxis and electrotaxis studies. However, a microfluidic device that can configure controlled co-existing chemical gradients and dcEF that would allow quantitative cell migration analysis in complex electrochemical guiding environments is not available. In this study, we developed a polydimethylsiloxane-based microfluidic device that can generate better controlled single or co-existing chemical gradients and dcEF. Using this device, we showed chemotactic migration of T cells toward a chemokine CCL19 gradient or electrotactic migration toward the cathode of an applied dcEF. Furthermore, T cells migrated more strongly toward the cathode of a dcEF in the presence of a competing CCL19 gradient, suggesting the higher electrotactic attraction. Taken together, the developed microfluidic device offers a new experimental tool for studying chemical and electrical guidance for cell migration, and our current results with T cells provide interesting new insights of immune cell migration in complex guiding environments.  相似文献   

11.
We developed a new method for releasing viable cells from affinity-based microfluidic devices. The lumen of a microchannel with a U-shape and user-designed microstructures was coated with supported lipid bilayers functionalized by epithelial cell adhesion molecule antibodies to capture circulating epithelial cells of influx solution. After the capturing process, air foam was introduced into channels for releasing target cells and then carrying them to a small area of membrane. The results show that when the air foam is driven at linear velocity of 4.2 mm/s for more than 20 min or at linear velocity of 8.4 mm/s for more than 10 min, the cell releasing efficiency approaches 100%. This flow-induced shear stress is much less than the physiological level (15 dyn/cm2), which is necessary to maintain the intactness of released cells. Combining the design of microstructures of the microfluidic system, the cell recovery on the membrane exceeds 90%. Importantly, we demonstrate that the cells released by air foam are viable and could be cultured in vitro. This novel method for releasing cells could power the microfluidic platform for isolating and identifying circulating tumor cells.  相似文献   

12.
Multi-cellular tumor spheroids (MCTSs) have been established as a 3D physiologically relevant tumor model for drug testing in cancer research. However, it is difficult to control the MCTS testing parameters and the entire process is time-consuming and expensive. To overcome these limitations, we developed a simple microfluidic system using polydimethylsiloxane (PDMS) microbubbles to culture tumor spheroids under physiological flow. The flow characteristics such as streamline directions, shear stress profile, and velocity profile inside the microfluidic system were first examined computationally using a COMSOL simulation. Colo205 tumor spheroids were created by a modified hanging drop method and maintained inside PDMS microbubble cavities in perfusion culture. Cell viability inside the microbubbles was examined by live cell staining and confocal imaging. E-selectin mediated cell sorting of Colo205 and MDA-MB-231 cell lines on functionalized microbubble and PDMS surfaces was achieved. Finally, to validate this microfluidic system for drug screening purposes, the toxicity of the anti-cancer drug, doxorubicin, on Colo205 cells in spheroids was tested and compared to cells in 2D culture. Colo205 spheroids cultured in flow showed a threefold increase in resistance to doxorubicin compared to Colo205 monolayer cells cultured under static conditions, consistent with the resistance observed previously in other MCTS models. The advantages presented by our microfluidic system, such as the ability to control the size uniformity of the spheroids and to perform real-time imaging on cells in the growth platform, show potential for high throughput drug screening development.  相似文献   

13.
This paper reports a two-layered polydimethylsiloxane microfluidic device—Flip channel, capable of forming uniform-sized embryoid bodies (EBs) and performing stem cell differentiation within the same device after flipping the microfluidic channel. The size of EBs can be well controlled by designing the device geometries, and EBs with multiple sizes can be formed within a single device to study EB size-dependent stem cell differentiation. During operation of the device, cells are positioned in the designed positions. As a result, observation and monitoring specific population of cells can be achieved for further analysis. In addition, after flipping the microfluidic channel, stem cell differentiation from the EBs can be performed on an unconfined flat surface that is desired for various differentiation processes. In the experiments, murine embryonic stem cells (ES-D3) are cultured and formed EBs inside the developed device. The size of EBs is well controlled inside the device, and the neural differentiation is performed on the formed EBs after flipping the channel. The EB size-dependent stem cell differentiation is studied using the device to demonstrate its functions. The device provides a useful tool to study stem cell differentiation without complicated device fabrication and tedious cell handling under better-controlled microenvironments.  相似文献   

14.
This study reports an integrated microfluidic system capable of isolation, counting, and sorting of hematopoietic stem cells (HSCs) from cord blood in an automatic format by utilizing a magnetic-bead-based immunoassay. Three functional modules, including cell isolation, cell counting, and cell sorting modules are integrated on a single chip by using microfluidic technology. The cell isolation module is comprised of a four-membrane-type micromixer for binding of target stem cells and magnetic beads, two pneumatic micropumps for sample transport, and an S-shaped channel for isolation of HSCs using a permanent magnet underneath. The counting and sorting of HSCs are performed by utilizing the cell counting and sorting modules. Experimental results show that a separation efficiency as high as 88% for HSCs from cord blood is achieved within 40 min for a sample volume of 100 μl. Therefore, the development of this integrated microfluidic system may be promising for various applications such as stem cell research and cell therapy.  相似文献   

15.
We report how cell rheology measurements can be performed by monitoring the deformation of a cell in a microfluidic constriction, provided that friction and fluid leaks effects between the cell and the walls of the microchannels are correctly taken into account. Indeed, the mismatch between the rounded shapes of cells and the angular cross-section of standard microfluidic channels hampers efficient obstruction of the channel by an incoming cell. Moreover, friction forces between a cell and channels walls have never been characterized. Both effects impede a quantitative determination of forces experienced by cells in a constriction. Our study is based on a new microfluidic device composed of two successive constrictions, combined with optical interference microscopy measurements to characterize the contact zone between the cell and the walls of the channel. A cell squeezed in a first constriction obstructs most of the channel cross-section, which strongly limits leaks around cells. The rheological properties of the cell are subsequently probed during its entry in a second narrower constriction. The pressure force is determined from the pressure drop across the device, the cell velocity, and the width of the gutters formed between the cell and the corners of the channel. The additional friction force, which has never been analyzed for moving and constrained cells before, is found to involve both hydrodynamic lubrication and surface forces. This friction results in the existence of a threshold for moving the cells and leads to a non-linear behavior at low velocity. The friction force can nevertheless be assessed in the linear regime. Finally, an apparent viscosity of single cells can be estimated from a numerical prediction of the viscous dissipation induced by a small step in the channel. A preliminary application of our method yields an apparent loss modulus on the order of 100 Pa s for leukocytes THP-1 cells, in agreement with the literature data.  相似文献   

16.
Efficient lysis is critical when analyzing single cells in microfluidic droplets, but existing methods utilize detergents that can interfere with the assays to be performed. We demonstrate robust cell lysis without the use of detergents or other chemicals. In our method, cells are exposed to electric field immediately before encapsulation in droplets, resulting in cell lysis. We characterize lysis efficiency as a function of control parameters and demonstrate compatibility with enzymatic assays by measuring the catalysis of β-glucosidase, an important cellulase used in the conversion of biomass to biofuel. Our method enables assays in microfluidic droplets that are incompatible with detergents.  相似文献   

17.
Culture of cells as three-dimensional (3D) aggregates, named spheroids, possesses great potential to improve in vitro cell models for basic biomedical research. However, such cell spheroid models are often complicated, cumbersome, and expensive compared to conventional Petri-dish cell cultures. In this work, we developed a simple microfluidic device for cell spheroid formation, culture, and harvesting. Using this device, cells could form uniformly sized spheroids due to strong cell–cell interactions and the spatial confinement of microfluidic culture chambers. We demonstrated cell spheroid formation and culture in the designed devices using embryonic stem cells, carcinoma cells, and fibroblasts. We further scaled up the device capable of simultaneously forming and culturing 5000 spheroids in a single chip. Finally, we demonstrated harvesting of the cultured spheroids from the device with a simple setup. The harvested spheroids possess great integrity, and the cells can be exploited for further flow cytometry assays due to the ample cell numbers.  相似文献   

18.
A microfluidic device that is able to perform dielectric spectroscopy is developed. The device consists of a measurement chamber that is 250 μm thick and 750 μm in radius. Around 1000 cells fit inside the chamber assuming average quantities for cell radius and volume fraction. This number is about 1000 folds lower than the capacity of conventional fixtures. A T-cell leukemia cell line Jurkat is tested using the microfluidic device. Measurements of deionized water and salt solutions are utilized to determine parasitic effects and geometric capacitance of the device. Physical models, including Maxwell-Wagner mixture and double shell models, are used to derive quantities for sub-cellular units. Clausius-Mossotti factor of Jurkat cells is extracted from the impedance spectrum. Effects of cellular heterogeneity are discussed and parameterized. Jurkat cells are also tested with a time domain reflectometry system for verification of the microfluidic device. Results indicate good agreement of values obtained with both techniques. The device can be used as a unique cell diagnostic tool to yield information on sub-cellular units.  相似文献   

19.
The application of microfluidic technologies to stem cell research is of great interest to biologists and bioengineers. This is chiefly due to the intricate ability to control the cellular environment, the reduction of reagent volume, experimentation time and cost, and the high-throughput screening capabilities of microscale devices. Despite this importance, a simple-to-use microfluidic platform for studying the effects of growth factors on stem cell differentiation has not yet emerged. With this consideration, we have designed and characterized a microfluidic device that is easy to fabricate and operate, yet contains several functional elements. Our device is a simple polyester-based microfluidic chip capable of simultaneously screening multiple independent stem cell culture conditions. Generated by laser ablation and stacking of multiple layers of polyester film, this device integrates a 10 × 10 microwell array for cell culture with a continuous perfusion system and a non-linear concentration gradient generator. We performed numerical calculations to predict the gradient formation and calculate the shear stress acting on the cells inside the device. The device operation was validated by culturing murine embryonic stem cells inside the microwells for 5 days. Furthermore, we showed the ability to maintain the pluripotency of stem cell aggregates in response to concentrations of leukemia inhibitory factor ranging from 0 to ∼1000 U/ml. Given its simplicity, fast manufacturing method, scalability, and the cell-compatible nature of the device, it may be a useful platform for long-term stem cell culture and studies.  相似文献   

20.
Microfluidic chip is a promising platform for studying virus behaviors at the cell level. However, only a few chip-based studies on virus infection have been reported. Here, a three-layer microfluidic chip with low shear stress was designed to monitor the infection process of a recombinant Pseudorabies virus (GFP-PrV) in real time and in situ, which could express green fluorescent protein during the genome replication. The infection and proliferation characteristics of GFP-PrV were measured by monitoring the fluorescence intensity of GFP and determining the one-step growth curve. It was found that the infection behaviors of GFP-PrV in the host cells could hardly be influenced by the microenvironment in the microfluidic chip. Furthermore, the results of drug inhibition assays on the microfluidic chip with a tree-like concentration gradient generator showed that one of the infection pathways of GFP-PrV in the host cells was microtubule-dependent. This work established a promising microfluidic platform for the research on virus infection.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号