首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Angular velocity stabilization problem for underactuated rigid satellites with only two independent control inputs is investigated, and a novel stabilization control strategy based on energy shaping is presented in this paper. Firstly, a desired closed-loop system with a specific structure is constructed for the control objective. The matching condition and controller structure are determined by equating the underactuated satellite system with the desired system. Moreover, a feasible sufficient condition satisfying the matching condition is derived. By solving the sufficient condition according to three different structures of the satellite inertia tensor matrix, three nonlinear smooth stabilization control laws are obtained, and global asymptotic stability of the related closed-loop system is rigorously proved. Simulation results show effectiveness of the proposed control method.  相似文献   

2.
3.
In this paper, some theorems are stated, which allow to design robust control laws without chattering, of type PD or PI, for uncertain nonlinear MIMO systems having a quite general structure, to track sufficiently regular trajectories with preassigned maximum error. The proposed control laws are easy to design and implement, above all for the robotic systems, because these laws can also be decentralized and they are based on two design parameters: the first related to the maximum eigenvalue of the inertia matrix from which the practical stability depends on, and the second related to the practical region of asymptotic stability (RAS), to the precision of the tracking error and to the convergence velocity of the tracking error to the desired neighborhood. If the trajectories to track are not sufficiently regular, suitable filtering laws are proposed for these trajectories, so as to facilitate the implementation of the controller and reduce the control action especially during the transient phase.Three significant examples of application in the terrestrial, sea transportation and robotic areas, well showing the simplicity of design and implementation of the controllers and their effectiveness, are reported.  相似文献   

4.
This paper introduces an alternative method artificial neural networks (ANN) used to obtain numerical solutions of mathematical models of dynamic systems, represented by ordinary differential equations (ODEs) and partial differential equations (PDEs). The proposed trial solution of differential equations (DEs) consists of two parts: The initial and boundary conditions (BCs) should be satisfied by the first part. However, the second part is not affected from initial and BCs, but it only tries to satisfy DE. This part involves a feedforward ANN containing adjustable parameters (weight and bias). The proposed solution satisfying boundary and initial condition uses a feedforward ANN with one hidden layer varying the neuron number in the hidden layer according to complexity of the considered problem. The ANN having appropriate architecture has been trained with backpropagation algorithm using an adaptive learning rate to satisfy DE. Moreover, we have, first, developed the general formula for the numerical solutions of nth-order initial-value problems by using ANN.For numerical applications, the ODEs that are the mathematical models of linear and non-linear mass-damper-spring systems and the second- and fourth-order PDEs that are the mathematical models of the control of longitudinal vibrations of rods and lateral vibrations of beams have been considered. Finally, the responses of the controlled and non-controlled systems have been obtained. The obtained results have been graphically presented and some conclusion remarks are given.  相似文献   

5.
In this paper, a finite-horizon H consensus control problem is studied for multi-agent systems under the limited energy constraint. Due to the limited energy, only a part of agents can use high energy to transmit information infallibly, and the remaining agents are randomly allocated low energy with several levels, which may lead to packet loss in some sense. Different levels result in different packet dropout probability. The purpose of this paper is to design a probability-dependent controller such that, for all probabilistic energy allocation and packet dropout, the H consensus performance can be guaranteed for multi-agent systems over a finite horizon. To this end, a stochastic and high-availability energy allocation method is first presented via stratified multi-objective optimization methods and stochastic analysis methods. Based on this novel allocation, a H consensus controller depending on the varying energy allocation is established. Furthermore, in terms of the probability information of both energy allocation and packet dropout, important results are obtained to guarantee the desired performance of the designed probability-dependent controller, and the controller are explicitly parameterized by means of the solutions to a set of linear matrix inequalities. Finally, a simulation example is utilized to illustrate the usefulness of the proposed controller design method.  相似文献   

6.
This paper investigates the finite-time stability (FTS) and finite-time stabilization for a class of nonlinear singular time-delay Hamiltonian systems, and proposes a number of new results on these issues. Firstly, an equivalent form is obtained for the nonlinear singular time-delay Hamiltonian systems by the singular matrix decomposition method, based on which some delay-independent and delay-dependent conditions on the FTS are derived for the systems by constructing a kind of novel Lyapunov function. Secondly, we use the equivalent form as well as the energy shaping plus damping injection technique to investigate the finite-time stabilization problem for a class of nonlinear singular port-controlled Hamiltonian (PCH) systems with time delay, and present a specific control design procedure for the systems. Finally, we give several illustrative examples to show the effectiveness of the results obtained in this paper.  相似文献   

7.
In this paper, the exponential stabilization problem of uncertain T–S fuzzy systems with time-varying delay is emulated by fuzzy sampled-data H control. Firstly, a novel suitable Lyapunov–Krasovskii function is constructed, which contains all the information about the sampling pattern. Secondly, a less conservative result is achieved by using an extended Jensen inequality, and purposefully using a compact free weighting matrix. In addition, according to the linear matrix inequality (LMI), some sampled-data H exponential stability sufficient conditions and controller design of T–S fuzzy systems are established. Finally, effectiveness gives some illustrative examples may be used to display the value of the current proposed method as well as a significant improvement.  相似文献   

8.
This article investigates the finite-time consensus problem for the attitude system of multiple spacecraft under directed graph, where the communication bandwidth constraint, inertia matrix uncertainties and external disturbances are considered. An event-triggered communication mechanism is developed to address the problem of communication bandwidth constraint. In this event-triggered mechanism, spacecraft sends their attitude information to their neighbors only when the given event is triggered. Furthermore, an adaptive law is designed to counteract the effect of inertia matrix uncertainties and external disturbances. Then, a finite-time attitude consensus tracking control scheme is proposed based on the event-triggered communication mechanism and adaptive law. The proposed control scheme can guarantee the finite-time stability and convergence of the multiple spacecraft systems and exclude the Zeno phenomenon. Finally, simulation results validate the effectiveness of the proposed control scheme.  相似文献   

9.
The energy regulation of fully actuated torque–driven robot manipulators in joint space is addressed in this paper. The proposed controller is designed via an energy shaping plus damping injection approach. The contribution is the proposal of an energy regulator with partial damping injection capable of inducing oscillations in the undamped joints of robot manipulators, with an user specified desired frequency and amplitude, by adding only damping in the rest of the joints, which may require less control effort than a trajectory tracking controller with full damping injection. Although viscous friction is considered in all joints of robot manipulator, it has been compensated via the proposed energy regulator. Moreover, the controlled periodic motion oscillates around a desired joint position as reference, and this provides a nice feature in the robot, mainly when there is not interest in the undamped joint to follow an specified time-varying sinusoidal function, but generating an oscillatory motion of constant amplitude and frequency. Instrumental in stability analysis is the Lyapunov’s theory and LaSalle’s theorem, which allows concluding that the closed-loop trajectories approach an invariant set that could include a unique equilibrium or periodic orbits. Numerical simulations on a manipulator arm model of two degrees of freedom illustrate the main results.  相似文献   

10.
An evolutionary programming-based adaptive observer is presented in this paper to improve the performance of state estimation of nonlinear time-varying sampled-data systems. Also, this paper presents a novel state-space adaptive tracker together with the proposed observer and estimation schemes for nonlinear time-varying sampled-data systems having actuator failures. For the class of slowly varying nonlinear time-varying systems, the proposed methodology is able to achieve the desired fault detection and performance recovery for the originally well-designed systems, as long as the controller having the high-gain property. For practical implementation, we utilize the advantages of digital redesign methodology to convert a well-designed high-gain analog controller/observer into its corresponding low-gain digital controller/observer. Illustrative examples are given to demonstrate the effectiveness of the proposed method. The developed digitally redesigned adaptive tracker with the proposed observer and estimator is suitable for implementation by using microprocessors.  相似文献   

11.
In this study, a robust fractional-order controller design methodology for a type of fractional-order or integer-order model with dead time is proposed using phase and gain margin specifications. The delayed Bode’s ideal transfer function is used as a reference model to design the controller analytically. The delay term in delayed Bode’s ideal transfer function provides the exact determination of these frequency domain specifications when the system owns a dead time. The analytical robust controller design problem is transformed to solving four nonlinear equations with four unknown variables, two of which are the desired specifications; namely, phase and gain margins. The remaining two are the phase and gain cross-over frequencies. Next, some conditions are set based on the desired specifications so that nonlinear equations provide a unique solution. The proposed method is compared with the other existing robust controller methods based on the same frequency domain specifications. The simulation results reveal that the proposed method outperforms the other methods and also gives closer outcomes to the desired specifications.  相似文献   

12.
Intelligent control systems are able to work well in uncertain nonlinear systems, mainly for: changes in the operating point, presence of environmental noise and disturbances, uncertainty in sensor measurements, miscalibration, uncertain model plant, and others. For instance, fuzzy controllers have been widely studied and applied. Recently, artificial organic controllers (AOC) have been proposed as an ensemble of fuzzy logic and artificial hydrocarbon networks. However, a weakness in AOC is the lack of training methods for tuning parameters for desired output responses in control. In this regard, this paper aims to introduce an evolutionary optimization method, i.e. particle swarm optimization, for tuning artificial organic controllers. Three objectives are proposed for automatic tuning of AOC: overall error, steady-state error and settling time of output response. The proposed methodology is implemented in the well-known cart-pole system. Also, the proposed method is applied on a one-leg unstable mechanism as case study. Results validate that automatic tuning of AOC over simulation systems can achieve suitable output responses with minimal overall error, steady-state error and settling time.  相似文献   

13.
In this paper, the specified-time bearing-based formation control problem is investigated via a dynamic gain approach. Both the leader-follower and leaderless cases for single- and double-integral multi-agent systems are considered with bearing measurement, respectively. By considering the communication graph as bearing rigid, distributed bearing-based controllers with a time-varying gain are designed. By using time transformation method and Lyapunov stability theory, the close-loop systems under the proposed protocols can achieve the target formation within the specified time. Comparing with some existing results, the proposed approaches can make multi-agent systems converge to the desired formation within any preset time without dependence on the initial conditions or system parameters. Finally, some simulations and experiments are presented to demonstrate the effectiveness of the proposed algorithms.  相似文献   

14.
Input shaping provides an effective method for suppressing residual vibration of flexible structure systems. However, it is not very robust to parameter uncertainties and external disturbances. In this paper, a closed-loop input shaping method is developed for suppressing residual vibration of multi-mode flexible structure systems with parameter uncertainties and external disturbances. The proposed scheme integrates both input shaping control and discrete-time neuro-sliding mode output feedback control (NSMOFC). The input shaper is designed for the reference model and implemented outside of the feedback loop to achieve the exact elimination of residual vibration. In the feedback loop, the discrete-time NSMOFC technique is employed to make the closed-loop system behave like the reference model with input shaper, where the residual vibration is suppressed. The selection of switching surface and the existence of sliding mode have been addressed. The knowledge of upper bound of uncertainties is not required. Furthermore, it is shown that increasing the robustness to parameter uncertainties does not lengthen the duration of the impulse sequence. Simulation results demonstrate the efficacy of the proposed closed-loop input shaping control scheme.  相似文献   

15.
This paper investigates sliding mode control of stochastic singular Markovian jump systems with nonlinearity. The unmatched nonlinearity satisfies one-sided Lipschitz condition and quadratically inner-boundedness. In term of a new technical variable transformation, sufficient conditions are developed for nonlinear stochastic singular Markovian jump systems constrained on sliding manifold to guarantee stochastic admissibility and uniqueness of solution based on implicit function theorem. The sliding mode control law by which the trajectories of system can be compelled to the predefined sliding surface in finite time no matter what initial state value is, is synthesized. The derivative singular matrix is fully considered in the whole design process such that the derived conditions can be checked easily.The technical treatment of the nonlinear matrix term avoids the classification discussion of sliding mode controller design. Convex optimization problems subject to linear matrix inequalities are formulated to optimize the desired indexes of interest. Finally, the effectiveness of the proposed approach is illustrated by a numerical example and a practical example.  相似文献   

16.
This paper intends to focus on the anti-disturbance synchronization issue for genetic regulatory networks subject to reaction-diffusion terms based on the Takagi-Sugeno fuzzy model. In view of the fact that disturbances are widespread in actual control engineering, the stability of the aforementioned systems would be affected, therefore, ensuring the stability of closed-loop genetic regulatory networks is the main goal of this paper. The unknown disturbances are supposed to be generated by an exogenous system, which can be estimated by developing disturbance observers. Furthermore, integrating the disturbance observers with fuzzy rule-based conventional control laws, a new anti-disturbance control strategy is proposed to reject the disturbances and guarantee the desired dynamic performances. Then, by constructing a proper Lyapunov function and using advanced decoupling techniques, some sufficient conditions in the form of linear matrix inequalities, to guarantee the asymptotic stability of the error system, are obtained. Finally, an illustrated example is presented to demonstrate the effectiveness and superiority of the proposed method.  相似文献   

17.
In this paper, we investigate the static output-feedback stabilization problem for LTI positive systems with a time-varying delay in the state and output vectors. By exploiting the induced monotonicity, necessary and sufficient conditions ensuring exponential stability of the closed-loop system are first quoted. Based on the derived stability conditions, necessary and sufficient stabilization conditions are formulated in terms of matrix inequalities. This general setting is then transformed into suitable vertex optimization problems by which necessary and sufficient conditions for the existence of a desired static output-feedback controller are obtained. The proposed synthesis conditions are presented in the form of linear programming conditions, which can be effectively solved by various convex algorithms.  相似文献   

18.
A novel direct synthesis (DS) method for simultaneous and non-iterative design of multi-loop PID controllers for stable multivariable processes is presented in this article. We deal with the specifications of the desired closed-loop dynamics, which is a critical design decision in the DS method, for designing multi-loop controllers. Control loop interactions in multi-loop control systems are usually undesirable but unavoidable due to inter-channel interactions of multivariable processes. The main feature of the method is that the multi-loop control design aims at reducing the interactions among loops. The proposed DS method specifies the design target in terms of the frequency response of the desired closed-loop transfer function (CLTF) and synthesizes the controllers in the frequency domain. We develop an approach to effectively specify the desired closed-loop frequency response to achieve improved control performance by minimizing the sum of the magnitude of the interactive parts in the desired CLTF matrix. With the desired closed-loop frequency response and a process model, the frequency response of an ideal multi-loop controller is synthesized and then approximated to a PID controller. We provide simulation studies of three industrial benchmark processes and a nonlinear quadruple tank system to illustrate the design result and performance of the proposed method and make comparisons with several existing methods. Our results prove the effectiveness of the frequency-domain DS method. The proposed multi-loop PID controllers achieve reduced loop interactions and provide satisfactory overall performance.  相似文献   

19.
This paper considers the group output consensus problem for a class of disturbed port-controlled Hamiltonian multi-agent systems via a composite control method. The composite distributed control protocol is proposed by combining the damping injection and energy shaping method, the finite-time disturbance observer (FTDO) technique and distributed protocol, which makes the closed-loop Hamiltonian multi-agent systems asymptotically stable and the group outputs reach consensus. It is shown that many kinds of disturbances can be estimated accurately via the FTDO. The advantage is that this control scheme exhibits not only better robustness against disturbances, but also the nominal system recovery performance. Two illustrative examples reveal that the designed control protocol is effective.  相似文献   

20.
In this paper, we will investigate the necessary conditions, described by the Lyapunov matrix, for the robust exponential stability for a class of linear uncertain systems with a single constant delay and time-invariant parametric uncertainties, which are some generalizations of the existing results on uncertain linear time-delay systems. As a medium step, several pivotal properties of parameter-dependent Lyapunov matrix are proposed, which set up the relationships between fundamental matrix and Lyapunov matrix for the considered system. In addition, to calculate the parameter-dependent Lyapunov matrix, we introduce the differential equation method and the Lagrange interpolation method, respectively. Furthermore, it is noted that the proposed necessary conditions can be used to estimate the range of time delay, when the linear uncertain time-delay system is robust exponential stability. Finally, the validity of the obtained theoretical results is illustrated via numerical examples.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号