首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
In this paper, the distributed optimization problem is investigated by employing a continuous-time multi-agent system. The objective of agents is to cooperatively minimize the sum of local objective functions subject to a convex set. Unlike most of the existing works on distributed convex optimization, here we consider the case where the objective function is pseudoconvex. In order to solve this problem, we propose a continuous-time distributed project gradient algorithm. When running the presented algorithm, each agent uses only its own objective function and its own state information and the relative state information between itself and its adjacent agents to update its state value. The communication topology is represented by a time-varying digraph. Under mild assumptions on the graph and the objective function, it shows that the multi-agent system asymptotically reaches consensus and the consensus state is the solution to the optimization problem. Finally, several simulations are carried out to verify the correctness of our theoretical achievements.  相似文献   

2.
This paper studies the time-varying output formation tracking problems for heterogeneous linear multi-agent systems with multiple leaders in the presence of switching directed topologies, where the agents can have different system dynamics and state dimensions. The outputs of followers are required to accomplish a given time-varying formation configuration and track the convex combination of leaders’ outputs simultaneously. Firstly, using the neighboring relative information, a distributed observer is constructed for each follower to estimate the convex combination of multiple leaders’ states under the influences of switching directed topologies. The convergence of the observer is proved based on the piecewise Lyapunov theory and the threshold for the average dwell time of the switching topologies is derived. Then, an output formation tracking protocol based on the distributed observer and an algorithm to determine the control parameters of the protocol are presented. Considering the features of heterogeneous dynamics, the time-varying formation tracking feasible constraints are provided, and a compensation input is applied to expand the feasible formation set. Sufficient conditions for the heterogeneous multi-agent systems with multiple leaders and switching directed topologies to achieve the desired time-varying output formation tracking under the designed protocol are proposed. Finally, simulation examples are given to validate the theoretical results.  相似文献   

3.
This paper considers a nonsmooth constrained distributed convex optimization over multi-agent systems. Each agent in the multi-agent system only has access to the information of its objective function and constraint, and cooperatively minimizes the global objective function, which is composed of the sum of local objective functions. A novel continuous-time algorithm is proposed to solve the distributed optimization problem and effectively characterize the appropriate gain of the penalty function. It should be noted that the proposed algorithm is based on an adaptive strategy to avoid introducing the primal-dual variables and estimating the related exact penalty parameters. Additional, it is demonstrated that the state solution of the proposed algorithm achieves consensus and converges to an optimal solution of the optimization problem. Finally, numerical simulations are given and the proposed algorithm is applied to solve the optimal placement problem and energy consumption problem.  相似文献   

4.
This paper concentrates on a class of decentralized convex optimization problems subject to local feasible sets, equality and inequality constraints, where the global objective function consists of a sum of locally smooth convex functions and non-smooth regularization terms. To address this problem, a synchronous full-decentralized primal-dual proximal splitting algorithm (Syn-FdPdPs) is presented, which avoids the unapproximable property of the proximal operator with respect to inequality constraints via logarithmic barrier functions. Following the proposed decentralized protocol, each agent carries out local information exchange without any global coordination and weight balancing strategies introduced in most consensus algorithms. In addition, a randomized version of the proposed algorithm (Rand-FdPdPs) is conducted through subsets of activated agents, which further removes the global clock coordinator. Theoretically, with the help of asymmetric forward-backward-adjoint (AFBA) splitting technique, the convergence results of the proposed algorithms are provided under the same local step-size conditions. Finally, the effectiveness and practicability of the proposed algorithms are demonstrated by numerical simulations on the least-square and least absolute deviation problems.  相似文献   

5.
This paper studies adaptive optimization problem of continuous-time multi-agent systems. Multi-agents with second-order dynamics are considered. Each agent is equipped with a time-varying cost function which is known only to an individual agent. The objective is to make multi-agents velocities minimize the sum of local functions by local interaction. First, a distributed adaptive algorithm is presented, in which each agent depends only on its own velocity and neighbors velocities. It is indicated that all agents can track the optimal velocity. Then we apply the distributed adaptive algorithm to flocking of multi-agents. It is proved that all agents can track the optimal trajectory. The agents will maintain connectivity and avoid the inter-agent collision. Finally, two simulations are included to illustrate the results.  相似文献   

6.
As for the multi-agent systems (MASs) with time-varying switching subject to deception attacks, the leader-following consensus problem is studied in this article. The one-sided Lipschitz (OSL) condition is utilized for the nonlinear functions, which makes the results more general and relaxed than those obtained by Lipschitz condition. The nonidentical double event-triggering mechanisms (ETMs) are adopted for only a fraction of agents, and each agent transmits the data according to its own necessity. Semi-Markov process modeling with time-varying switching probability is adopted for switching topology and deception attacks occurring in transmission channel are considered. By using the cumulative distribution function (CDF) and the linear matrix inequality (LMI) technology, sufficient conditions for MASs to achieve consensus in mean square are obtained. An effective algorithm is presented to obtain the event-based control gains. The merits of the proposed control scheme are demonstrated via a simulation example.  相似文献   

7.
This paper proposes two-stage continuous-time triggered algorithms for solving distributed optimization problems with inequality constraints over directed graphs. The inequality constraints are penalized by adopting log-barrier penalty method. The first stage of the proposed algorithms is capable of finding the optimal point of each local optimization problem in finite time. In the second stage of the proposed algorithms, zero-gradient-sum algorithms with time-triggered and event-triggered communication strategies are considered in order to reduce communication costs. Then, with the help of LaSalle’s invariance principle, it is proved that the state solution of each agent reaches consensus at the optimal point of the considered penalty distributed optimization problem, and Zeno behavior is also excluded. Finally, numerical examples are given to illustrate the effectiveness of the proposed algorithms.  相似文献   

8.
This article investigates the stability analysis for a class of continuous-time switched systems with state constraints under pre-specified dwell time switchings. The state variables of the studied system are constrained to a unit closed hypercube. Firstly, based on the definition of set coverage, the system state under saturation is confined to a convex polyhedron and the saturation problem is converted into convex hull. Then, sufficient conditions are derived by introducing a class of multiple time-varying Lyapunov functions in the framework of pre-specified dwell time switchings. Such a dwell time is an arbitrary pre-specified constant which is independent of any other parameters. In addition, the proposed Lyapunov functions can efficiently eliminate the “jump” phenomena of adjacent Lyapunov functions at switching instants. The feature of this paper is that the definition of set coverage is utilized to replace the restriction on the row diagonally dominant matrices with negative diagonal elements to analyze stability. The other feature of the constructed time-varying Lyapunov functions is that there are two time-varying functions. One of the two time-varying functions contains the jump rate, which will present a certain degree of freedom in designing the dwell time switching signal. An iterative linear matrix inequality (LMI) algorithm is presented to verify the sufficient conditions. Finally, two examples are presented to show the validity of the method.  相似文献   

9.
In this paper, the consensus tracking problem is studied for a group of nonlinear heterogeneous multiagent systems with asymmetric state constraints and input delays. Different from the existing works, both input delays and asymmetric state constraints are assumed to be nonuniform and time-varying. By introducing a nonlinear mapping to handle the problem caused by state constraints, not only the feasibility condition is removed, but also the restriction on the constraint boundary functions is relaxed. The time-varying input delays are compensated by developing an auxiliary system. Furthermore, by utilizing the dynamic surface control method, neural network technology and the designed finite-time observer, the distributed adaptive control scheme is developed, which can achieve the synchronization between the followers’ output and the leader without the violation of full-state constraints. Finally, a numerical simulation is provided to verify the effectiveness of the proposed control protocol.  相似文献   

10.
This paper presents a novel iterative learning feedback control method for linear parabolic distributed parameter systems with multiple collocated piecewise observation. Multiple actuators and sensors distributed at the same position of the spatial domain are utilized to perform collocated piecewise control and measurement operations. The advantage of the proposed method is that it combines the iterative learning algorithm and feedback technique. Not only can it use the iterative learning algorithm to track the desired output trajectory, but also the feedback control approach can be utilized to achieve real-time online update. By utilizing integration by parts, triangle inequality, mean value theorem for integrals and Gronwall lemma, two sufficient conditions based on the inequality constraints for the convergence analysis of the tracking error system are presented. Some simulation experiments are provided to prove the effectiveness of the proposed method.  相似文献   

11.
The event-triggered consensus control for second-order multi-agent systems subject to actuator saturation and input time delay, is investigated in this paper. Based on the designed triggering function, a distributed event-triggered control strategy is presented to drive the system to achieve consensus. Communication energy can be saved as the agents send their state information only at infrequent event instants, the continuous communication among agents is not necessary. Lyapunov-Krasovskii functional is used together with linear matrix inequality technique to analyze the stability of the closed-loop error system. The results show that agents achieve exponentially consensus under the proposed controller. Furthermore, the bounds of solution are obtained by establishing the differential equation associated with the first delay interval. The initial domain is estimated by optimizing the linear matrix inequalities. Finally, simulation examples are presented to illustrate the effectiveness of the proposed controller.  相似文献   

12.
This paper studies the consensus problem for a class of nonlinear multi-agent systems with asymmetric time-varying output constraints and completely unknown non-identical control directions. Firstly, in order to deal with the problem of asymmetric time-varying output constraints, the original output-constrained multi-agent systems are transformed into new unconstrained multi-agent systems by constructing the state transformation for each agent. Secondly, the emergence of multiple Nussbaum-type function terms is avoided by introducing novel sliding-mode-esque auxiliary variables and consensus estimate variables, which allows the control directions to be completely unknown non-identical. Thirdly, a novel control strategy is proposed by combining novel variables with state transformation method for the first time, which makes the design of distributed consensus protocol more concise. Through Lyapunov stability analysis, the proposed distributed protocol ensures that the output constraints are never violated and the consensus can be achieved asymptotically. Finally, a practical simulation example is given to demonstrate the effectiveness of the proposed distributed consensus protocol.  相似文献   

13.
14.
《Journal of The Franklin Institute》2019,356(17):10196-10215
This paper deals with the large category of convex optimization problems on the framework of second-order multi-agent systems, where each distinct agent is assigned with a local objective function, and the overall optimization problem is defined as minimizing the sum of all the local objective functions. To solve this problem, two distributed optimization algorithms are proposed, namely, a time-triggered algorithm and an event-triggered algorithm, to make all agents converge to the optimal solution of the optimization problem cooperatively. The main advantage of our algorithms is to remove unnecessary communications, and hence reduce communication costs and energy consumptions in real-time applications. Moreover, in the proposed algorithms, each agent uses only the position information from its neighbors. With the design of the Lyapunov function, the criteria about the controller parameters are derived to ensure the algorithms converge to the optimal solution. Finally, numerical examples are given to illustrate the effectiveness of the proposed algorithms.  相似文献   

15.
This paper is concerned with the distributed H-consensus control problem over the finite horizon for a class of discrete time-varying multi-agent systems with random parameters. First, by utilizing the proposed information matrix, a new formula is established to calculate the weighted covariance matrix of random matrix. Next, by allowing every agent to track the average of the neighbor agents, a novel local H-consensus performance constraint is presented to cater to the local performance analysis. Then, by means of the proposed definition of the stochastic vector dissipativity-like over the finite horizon, a set of sufficient conditions for every agent is obtained such that the controlled outputs of the closed-loop multi-agent systems satisfy the proposed H-consensus performance constraint. As a result, the proposed consensus control algorithm can be executed on each agent in an indeed distributed manner. Finally, a simulation example is employed to verify the effectiveness of the proposed algorithm.  相似文献   

16.
《Journal of The Franklin Institute》2022,359(18):10602-10627
This paper considers the finite-time distributed economic dispatch problem in smart grids: the power generated by individual generators are designed to satisfy a certain demand while minimizing the total generation cost in a distributed manner, which guarantees the convergence in finite time. The proposed method facilitates the solution of real time power dispatch problems. First, a class of distributed economic dispatch algorithm is proposed to achieve the optimal solution in finite-time with and without capacity limitations. Second, in order to reduce the information exchange requirements, a distributed, asynchronous event-triggered communication scheme is established which is free of Zeno with guaranteed finite-time convergence. Furthermore, both proposed algorithms are robust to the time-varying communication networks. Simulation results illustrate the effectiveness and scalability of the distributed algorithms.  相似文献   

17.
In this paper, the distributed consensus problem of leader-follower multi-agent systems with unknown time-varying coupling gains and parameter uncertainties are investigated, and the fully distributed protocols with the adaptive updating laws of periodic time-varying parameters are designed by using a repetitive learning control approach. By virtue of algebraic graph theory, Barbalat’s lemma and an appropriate Lyapunov-Krasovskii functional, it is shown that each follower agent can asymptotically track the leader even though the dynamic of the leader is unknown to any of them, i.e., the global asymptotic consensus can be achieved. At last, a simulation example is given to illustrate the feasibility and efficiency of the proposed protocols.  相似文献   

18.
In this paper, we study the consensus tracking control problem of a class of strict-feedback multi-agent systems (MASs) with uncertain nonlinear dynamics, input saturation, output and partial state constraints (PSCs) which are assumed to be time-varying. An adaptive distributed control scheme is proposed for consensus achievement via output feedback and event-triggered strategy in directed networks containing a spanning tree. To handle saturated control inputs, a linear form of the control input is adopted by transforming the saturation function. The radial basis function neural network (RBFNN) is applied to approximate the uncertain nonlinear dynamics. Since the system outputs are the only available data, a high-gain adaptive observer based on RBFNN is constructed to estimate the unmeasurable states. To ensure that the constraints of system outputs and partial states are never violated, a barrier Lyapunov function (BLF) with time-varying boundary function is constructed. Event-triggered control (ETC) strategy is applied to save communication resources. By using backstepping design method, the proposed distributed controller can guarantee the boundedness of all system signals, consensus tracking with a bounded error and avoidance of Zeno behavior. Finally, the correctness of the theoretical results is verified by computer simulation.  相似文献   

19.
This paper studies the distributed Kalman consensus filtering problem based on the event-triggered (ET) protocol for linear discrete time-varying systems with multiple sensors. The ET strategy of the send-on-delta rule is employed to adjust the communication rate during data transmission. Two series of Bernoulli random variables are introduced to represent the ET schedules between a sensor and an estimator, and between an estimator and its neighbor estimators. An optimal distributed filter with a given recursive structure in the linear unbiased minimum variance criterion is derived, where solution of cross-covariance matrix (CCM) between any two estimators increases the complexity of the algorithm. In order to avert CCM, a suboptimal ET Kalman consensus filter is also presented, where the filter gain and the consensus gain are solved by minimizing an upper bound of filtering error covariance. Boundedness of the proposed suboptimal filter is analyzed based on a Lyapunov function. A numerical simulation verifies the effectiveness of the proposed algorithms.  相似文献   

20.
This paper addresses the discrete-time design and performance evaluation of finite-gain multiple resonant controllers for uninterruptible power supplies – UPS. Two discretization methods that preserve the affinity with respect to time-varying parameters are considered to obtain the discrete-time UPS uncertain model. Based on a state-feedback formulation for the proposed controller, a systematic approach for the robust design of controller gains is derived by the solution of a convex optimization problem subject to linear matrix inequality constraints. Simulation and experimental results in a 3.5 kVA inverter are obtained to compare the effects of distinct sampling frequencies and plant discretization methods with respect to the IEC 62040-3 performance parameters.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号