首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This paper studies the sampled outputs-based adaptive fault-tolerant control problem for a class of strict-feedback uncertain nonlinear systems, where the nonlinear functions are allowed to include the unmeasured system states. Within the framework, a sampled output observer is introduced to jointly estimate the system states and parameters. By combining the estimated states and the supervisory switching strategy, an adaptive fault-tolerant controller is designed to achieve the desirable tracking performance. By using Lyapunov stability theory, it is proved that all the signals of the closed-loop systems are bounded and the tracking error converges to an adjustable neighbourhood of the origin eventually both in the fault free and faulty cases. Especially, if the outputs are available all the time, the proposed output feedback fault-tolerant control method can ensure the tracking error satisfy the prescribed performance bounds regardless of the faults. Finally, two examples are used to illustrate the effectiveness of the proposed method.  相似文献   

2.
In this paper, the problem of adaptive fuzzy fault-tolerant control is investigated for a class of switched uncertain pure-feedback nonlinear systems under arbitrary switching. The considered actuator failures are modeled as both lock-in-place and loss of effectiveness. By utilizing mean value theorem, the considered pure-feedback systems are transformed into a class of switched nonlinear strict-feedback systems. Under the framework of backstepping design technique and common Lyapunov function (CLF), an adaptive fuzzy fault-tolerant control (FTC) method with predefined performance bounds is developed. It is proved that under the proposed controller, all the signals of the close-loop systems are bounded and the state tracking error for each step remains within the prescribed performance bound (PPB) regardless of actuator faults and the system switchings. In addition, the tracking errors and magnitudes of control inputs can be reduced by adjusting the PPB parameters of errors in the first and last steps. The simulation results are provided to show the effectiveness of the proposed control scheme.  相似文献   

3.
This paper studies the adaptive fuzzy fault-tolerant control design problem for a class of stochastic multi-input and multi-output (MIMO) nonlinear systems in pure-feedback form. The nonlinear systems under study contain unknown functions, unmeasured states and actuator faults, which are described by the loss of effectiveness and lock-in-place modes. With the help of fuzzy logic systems identifying uncertain stochastic nonlinear systems, a fuzzy state observer is established for estimating the unmeasured states. Based on the backstepping design technique with the nonlinear tolerant-fault control theory, an adaptive fuzzy output feedback faults-tolerant control approach is developed. It is proved that the proposed fault-tolerant control approach can guarantee that all the signals of the resulting closed-loop system are bounded in probability. Moreover, the observer errors and tracking errors can be regulated to a small neighborhood of the origin by choosing design parameters appropriately. A simulation example is provided to show the effectiveness of the proposed approach.  相似文献   

4.
In this paper, we present a fault-tolerant control (FTC) framework for a class of nonlinear networked control systems (NCSs). Firstly, the plant is transformed into two subsystems with one of them decoupled from the system fault. Then, the nonlinear observer is designed to provide the estimation of unmeasurable state and modelling uncertainty, which are used to construct fault estimation algorithm. Considering the sampling intervals occurred by net, a fault-tolerant control method is proposed for such nonlinear NCSs using the impulsive system techniques. The controller gain and the maximum sampling interval, which make the faulty system stable are given. An example is included to show the efficiency of the proposed method.  相似文献   

5.
This paper studies the fault-tolerant control (FTC) problem of a class of strict-feedback nonlinear systems. First, we put forward a key theorem which shows that type-B Nussbaum functions can be extended to the cases containing multiple Nussbaum functions in the same Lyapunov inequality under certain conditions. Then, by using the techniques of Nussbaum functions and adaptive control, a new fault-tolerant control scheme is proposed. Compared with the previous work, this paper considers unknown time-varying control coefficients and unknown time-varying fault coefficients of actuators. It is proved that all the signals of the closed-loop system are globally bounded and the tracking error converges to zero asymptotically. Finally, simulations are provided to verify the effectiveness of the proposed control scheme.  相似文献   

6.
In this work, we developed a novel active fault-tolerant control (FTC) design scheme for a class of nonlinear dynamic systems subjected simultaneously to modelling imperfections, parametric uncertainties and sensor faults. Modelling imperfections and parametric uncertainties are dealt with using an adaptive radial basis function neural network (RBFNN) that estimates the uncertain part of the system dynamics. For sensor fault estimation (FE), a nonlinear observer based on the estimated dynamics is designed. A scheme to estimate sensor faults in real-time using the nonlinear observer and an additional RBFNN is developed. The convergence properties of the RBFNN, used in the fault FE part, are improved by using a sliding surface function. For FTC design, a sliding surface is designed that incorporates the real-time sensor FE. The resulting sliding mode control (SMC) technique-based FTC law uses the estimated dynamics and real-time sensor FE. A double power-reaching law is adopted to design the switching part of the control law to improve the convergence and mitigate the chattering associated with the SMC. The FTC works well in the presence and absence of sensor faults without the requirement for controller reconfiguration. The stability of the proposed active FTC law is proved using the Lyapunov method. The developed scheme is implemented on a nonlinear simulation of an unmanned aerial vehicle (UAV). The results show good performance of the proposed unified FE and the FTC framework.  相似文献   

7.
This paper addresses the distributed adaptive output-feedback tracking control problem of uncertain multi-agent systems in non-affine pure-feedback form under a directed communication topology. Since the control input is implicit for each non-affine agent, we introduce an auxiliary first-order dynamics to circumvent the difficulty in control protocol design and avoid the algebraic loop problem in control inputs and the unknown control gain problem. A decentralized input-driven observer is applied to reconstruct state information of each agent, which makes the design and synthesis extremely simplified. Based on the dynamic surface control technique and neural network approximators, a distributed output-feedback control protocol with prescribed tracking performance is derived. Compared with the existing results, the restrictive assumptions on the partial derivative of non-affine functions are removed. Moreover, it is proved that the output tracking errors always stay in a prescribed performance bound. The simulation results are provided to demonstrate the effectiveness of the proposed method.  相似文献   

8.
This paper addresses the problem of controlling a wave energy converter (WEC) susceptible to faults in its braking subsystems, characterized through nonlinear damping. By considering the necessity of robust trajectory tracking related to the sea waves for maximizing the converted energy, one aims to preserve such a trajectory in the presence of faults to avoid physical damage in the structure of the WEC. To achieve this objective, this paper proposes a fault-tolerant control (FTC) that combines two systems: (i) a novel nonlinear servocompensator (NSC) and (ii) a fault diagnosis subsystem (FD). The NSC is based on a variable structure control that generalizes the internal model principle for robust tracking. The reference signal is computed from real-time measurements of the irregular sea waves. The FD subsystem estimates the faults related to the wear of the brakes via an unknown input observer. Due to its independent performance from the FD, the global scheme can be considered as a passive FTC. By considering the faulty model of a WEC based on the Archimedes wave swing prototype, theoretical formulation and the convergence proof are given for the NSC and the FD. The performance of the proposed design is verified with numerical simulations of the WEC with the incidence of irregular sea waves under different fault scenarios in the upper and lower brakes.  相似文献   

9.
This work considers a distributed adaptive output feedback control problem for nonlinear constrained multi-agent systems (MAS) in the prescribed finite time. To begin with, a state observer is constructed to estimate the unmeasurable state. Then, we develop a novel observer based distributed adaptive prescribed finite time output feedback control algorithm by incorporating the prescribed finite-time control technique into the backstepping design method. Through Lyapunov stability theory, it can be shown that all signals of MASs are bounded, the tracking errors converge to the adjustable regions around the origin within the pre-given error accuracy and settling time, and all states keep in the prescribed constraint regions. Finally, a simulation example verifies the efficacy of the obtained theoretical results.  相似文献   

10.
In this study, the distributed tracking problem for human-in-the-loop multi-agent systems (HiTL MASs) has been investigated. First, we construct an HiTL MAS model with a non-autonomous leader which can receive the control signal from a human operator and generate the desired trajectory. The human control signal is assumed to be generated by a leader’s state feedback control law with an unknown gain matrix that represents the control behavior of the human operator. Then, we propose a fully distributed adaptive control method that enables all followers to simultaneously track the human-controlled leader and online learn the unknown human operator’s feedback gain matrix. Furthermore, the parameter estimation error is also discussed, and all followers will learn the true value of the human operator’s feedback gain matrix when the state of the leader satisfies the persistent excitation (PE) condition. Moreover, a novel distributed adaptive control law is developed for each follower to remove the PE condition by utilizing the concurrent learning (CL) technique. Finally, simulated examples demonstrating the effectiveness of the proposed methodologies are presented.  相似文献   

11.
In this paper, global practical tracking is investigated via output feedback for a class of uncertain nonlinear systems subject to unknown dead-zone input. The nonlinear systems under consideration allow more general growth restriction, where the growth rate includes unknown constant and output polynomial function. Without the precise priori knowledge of dead-zone characteristic, an input-driven observer is designed by introducing a novel dynamic gain. Based on non-separation principle, a universal adaptive output feedback controller is proposed by combining dynamic high-gain scaling approach with backstepping method. The controller proposed guarantees that the closed-loop output can track any smooth and bounded reference signal by any small pre-given tracking error, while all closed-loop signals are globally bounded. Finally, simulation examples are given to illustrate the effectiveness of our dynamic output feedback control scheme.  相似文献   

12.
In this paper, the leader-following consensus problem is investigated by event-triggered control for multi-agent systems subject to time-varying actuator faults. Firstly, for a case of the leader without control input, a distributed event-triggered fault-tolerant protocol is proposed with the help of adaptive gains. Secondly, the proposed protocol is developed by an auxiliary nonlinear function to compensate the effect of the leader’s unknown bounded input. It is shown that under the both obtained protocols the tracking errors converge to an adjustable neighborhood around the origin, meanwhile the Zeno behavior is avoided. Moreover, the protocols are fully distributed in sense that any global information associated with the network is no longer utilized. Finally, numerical examples are presented to show the validity of the obtained protocols.  相似文献   

13.
This paper investigates the adaptive fuzzy output feedback fault-tolerant tracking control problem for a class of switched uncertain nonlinear systems with unknown sensor faults. In this paper, since the sensor may suffer from an unknown constant loss scaling failure, only actual output can be used for feedback design. A failure factor is employed to represent the loss of effectiveness faults. Then, an adaptive estimation coefficient is introduced to estimate the failure factor, and a state observer based on the actual output is constructed to estimate the system states. Fuzzy logic systems are used to approximate the unknown nonlinear functions. Based on the Lyapunov function method and the backstepping technique, the proposed control scheme with average dwell time constraints can guarantee that all states of the closed-loop system are bounded and the tracking error can converge to a small neighborhood of zero. Finally, two simulation examples are given to illustrate the effectiveness of the proposed scheme.  相似文献   

14.
In this paper, a novel tracking control scheme for continuous-time nonlinear affine systems with actuator faults is proposed by using a policy iteration (PI) based adaptive control algorithm. According to the controlled system and desired reference trajectory, a novel augmented tracking system is constructed and the tracking control problem is converted to the stabilizing issue of the corresponding error dynamic system. PI algorithm, generally used in optimal control and intelligence technique fields, is an important reinforcement learning method to solve the performance function by critic neural network (NN) approximation, which satisfies the Lyapunov equation. For the augmented tracking error system with actuator faults, an online PI based fault-tolerant control law is proposed, where a new tuning law of the adaptive parameter is designed to tolerate four common kinds of actuator faults. The stability of the tracking error dynamic with actuator faults is guaranteed by using Lyapunov theory, and the tracking errors satisfy uniformly bounded as the adaptive parameters get converged. Finally, the designed fault-tolerant feedback control algorithm for nonlinear tracking system with actuator faults is applied in two cases to track the desired reference trajectory, and the simulation results demonstrate the effectiveness and applicability of the proposed method.  相似文献   

15.
In this paper, a novel fast attitude adaptive fault-tolerant control (FTC) scheme based on adaptive neural network and command filter is presented for the hypersonic reentry vehicles (HRV) with complex uncertainties which contain parameter uncertainties, un-modeled dynamics, actuator faults, and external disturbances. To improve the performance of closed-loop FTC, command filter and neural network are introduced to reconstruct system nonlinearities that are related to complex uncertainties. Compared with the FTC scheme with only neural network, the FTC scheme with command filter and neural network has fewer controller design parameters so that the computational complexity is decreased and the control efficiency is improved, which is of great significance for HRV. Then, the adaptive backstepping fault-tolerant controller based on command filter and neural network is designed, which can solve the complexity explosion problem in the standard backstepping control and the small uncertainty problem in the backstepping control only containing command filter. Moreover, to improve the approximation accuracy of the neural network-based universal approximator, an adaptive update law of neural network weights is designed by using the convex optimization technique. It is proved that the presented FTC scheme can ensure that the closed-loop control system is stable and the tracking errors are convergent. Finally, simulation results are carried out to verify the superiority and effectiveness of the presented FTC scheme.  相似文献   

16.
《Journal of The Franklin Institute》2022,359(18):10525-10557
This paper is concerned with an event-triggered adaptive fault-tolerant problem for an uncertain non-affine system. The implicit function theorem and mean value theorem are utilized to transform a non-affine system into an affine one, and an extended state observer and a tracking differentiator are used to estimate unknown dynamics and the derivative of virtual control laws, respectively. Adaptive laws are designed for unknown faults, and an event-triggered control scheme with a time-varying threshold, based on a tracking error and adaptive parameters, is developed. The tracking error is steered to converge to a bounded set with the help of a predefined performance function, and its transient performance is improved despite of faults. The stability of the closed-loop system is analyzed by the theorem of the input-to-state practically stability, and the Zeno behavior is excluded. Finally, two examples are given to illustrate the effectiveness of the proposed scheme.  相似文献   

17.
This paper studies the time-varying output formation tracking problems for heterogeneous linear multi-agent systems with multiple leaders in the presence of switching directed topologies, where the agents can have different system dynamics and state dimensions. The outputs of followers are required to accomplish a given time-varying formation configuration and track the convex combination of leaders’ outputs simultaneously. Firstly, using the neighboring relative information, a distributed observer is constructed for each follower to estimate the convex combination of multiple leaders’ states under the influences of switching directed topologies. The convergence of the observer is proved based on the piecewise Lyapunov theory and the threshold for the average dwell time of the switching topologies is derived. Then, an output formation tracking protocol based on the distributed observer and an algorithm to determine the control parameters of the protocol are presented. Considering the features of heterogeneous dynamics, the time-varying formation tracking feasible constraints are provided, and a compensation input is applied to expand the feasible formation set. Sufficient conditions for the heterogeneous multi-agent systems with multiple leaders and switching directed topologies to achieve the desired time-varying output formation tracking under the designed protocol are proposed. Finally, simulation examples are given to validate the theoretical results.  相似文献   

18.
In this paper, we study the cooperative consensus control problem of mixed-order (also called hybrid-order) multi-agent mechanical systems (MMSs) under the condition of unmeasurable state, unknown disturbance and constrained control input. Here, the controlled mixed-order MMSs are consisted of the mechanical agents having heterogeneous nonlinear dynamics and even non-identical orders, which means that the agents can be of different types and their states to be synchronized can be not exactly the same. In order to achieve the ultimate synchronization of all mixed-order followers, we present a novel distributed adaptive tracking control protocol based on the state and disturbance observations. Wherein, a distributed state observer is used to estimate the followers’ and their neighbors’ unmeasurable states. And, a novel estimated-state-based disturbance observer (DOB) is proposed to reduce the effect of unknown lumped disturbance for the mixed-order MMSs. The proposed control protocol and observers are fully distributed and can be calculated for each follower locally. Lyapunov theory is used for proving the stability of the proposed control algorithm and the convergence of the cooperative tracking errors. A practical cooperative longitudinal landing control example of unmanned aerial vehicles (UAVs) is given to illustrate the effectiveness of the presented control protocol.  相似文献   

19.
This study examines the leader-following consensus problem of a class of second-order nonlinear multi-agent systems, where the velocity information is supposed to be unmeasurable. Under the setting, this paper presents a novel aperiodically intermittent output feedback control protocol such that all followers reach consensus with the leader, in which a distributed state observer is built for each follower to observe the velocity state. Based on the Lyapunov stability theory and some matrix analysis techniques, a couple of sufficient conditions for the leader-following consensus of the nonlinear multi-agent system under study are obtained even though the velocity state is unavailable. Finally, the effectiveness of the theoretical results is verified by numerical simulation.  相似文献   

20.
The current paper addresses the fuzzy adaptive tracking control via output feedback for single-input single-output (SISO) nonlinear systems in strict-feedback form. Under the situation of system states being unavailable, the system output is used to set up the state observer to estimate the real system states. Furthermore, the estimation states are employed to design controller. During the control design process, fuzzy logic systems (FLSs) are used to model the unknown nonlinearities. A novel observer-based finite-time tracking control scheme is proposed via fuzzy adaptive backstepping and barrier Lyapunov function approach. The suggested fuzzy adaptive output feedback controller can force the output tracking error to meet the pre-specified accuracy in a fixed time. Meanwhile, all the closed-loop variables are bounded. Compared to some existing finite-time output feedback control schemes, the developed control strategy guarantees that the settling time and the error accuracy are independent of the uncertainties and can be specified by the designer. At last, the effectiveness and feasibility of the proposed control scheme are demonstrated by two simulation examples.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号