首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
《Journal of The Franklin Institute》2019,356(18):11581-11604
A solution is provided in this paper for the adaptive approximate consensus problem of nonlinear multi-agent systems with unknown and non-identical control directions assuming an underlying graph topology having a spanning tree. This is achieved with the introduction of a novel variable transformation called PI consensus error transformation. The new variables include the position error of each agent from some reference trajectory chosen by him, which represents the agent’s selection for the desired swarm trajectory, along with an integral term of the weighted total displacement of the agent’s position from all neighbor positions. It is proven that if these new variables are bounded and regulated to zero, then asymptotic approximate consensus among all agents is ensured. Using classical Nussbaum gain based techniques, distributed controllers are designed to regulate the PI consensus error variables to zero and ultimately solve the approximate agreement problem. The proposed approach also allows for a specific calculation of the final consensus trajectory based on the controller parameter selection and the associated graph topology. It is shown that all agent positions converge towards a neighborhood of the weighted average of all agents reference trajectories. Simulation results verify our theoretical derivations.  相似文献   

2.
This study investigates the consensus tracking problem for unknown multi-agent systems (MASs) with time-varying communication topology by using the methods of data-driven control and model predictive control. Under the proposed distributed iterative protocol, sufficient conditions for reducing tracking error are analyzed for both time invariable and time varying desired trajectories. The main feature of the proposed protocol is that the dynamics of the multi-agent systems are not required to be known and only local input-output data are utilized for each agent. Numerical simulations are presented to illustrate the effectiveness of the derived consensus conditions.  相似文献   

3.
In this paper, the consensus tracking problem is studied for a group of nonlinear heterogeneous multiagent systems with asymmetric state constraints and input delays. Different from the existing works, both input delays and asymmetric state constraints are assumed to be nonuniform and time-varying. By introducing a nonlinear mapping to handle the problem caused by state constraints, not only the feasibility condition is removed, but also the restriction on the constraint boundary functions is relaxed. The time-varying input delays are compensated by developing an auxiliary system. Furthermore, by utilizing the dynamic surface control method, neural network technology and the designed finite-time observer, the distributed adaptive control scheme is developed, which can achieve the synchronization between the followers’ output and the leader without the violation of full-state constraints. Finally, a numerical simulation is provided to verify the effectiveness of the proposed control protocol.  相似文献   

4.
This paper investigates the precise containment control problem for nonlinear multi-agent systems (MAS) subject to non-vanishing uncertainties and unknown non-identical control directions under directed communication topology. Due to the existence of the inherent non-vanishing/non-parametric uncertainties and unknown control directions, the precise (zero-error) containment control synthesis becomes nontrivial. The underlying problem becomes even complicated if the convergence rate is required to be pre-specified. This work aims at circumventing the aforementioned difficulties to derive a precise containment control solution. The salient features behind the derived algorithms are: i) the non-vanishing uncertainties are completely rejected; ii) the containment error is regulated to zero at prescribed convergence rate, in spite of the non-vanishing uncertainties and unknown non-identical control directions; and iii) the full-state containment rather than output containment is achieved. A simulation example is given to confirm the effectiveness of the proposed method.  相似文献   

5.
In this paper, we study the cooperative consensus control problem of mixed-order (also called hybrid-order) multi-agent mechanical systems (MMSs) under the condition of unmeasurable state, unknown disturbance and constrained control input. Here, the controlled mixed-order MMSs are consisted of the mechanical agents having heterogeneous nonlinear dynamics and even non-identical orders, which means that the agents can be of different types and their states to be synchronized can be not exactly the same. In order to achieve the ultimate synchronization of all mixed-order followers, we present a novel distributed adaptive tracking control protocol based on the state and disturbance observations. Wherein, a distributed state observer is used to estimate the followers’ and their neighbors’ unmeasurable states. And, a novel estimated-state-based disturbance observer (DOB) is proposed to reduce the effect of unknown lumped disturbance for the mixed-order MMSs. The proposed control protocol and observers are fully distributed and can be calculated for each follower locally. Lyapunov theory is used for proving the stability of the proposed control algorithm and the convergence of the cooperative tracking errors. A practical cooperative longitudinal landing control example of unmanned aerial vehicles (UAVs) is given to illustrate the effectiveness of the presented control protocol.  相似文献   

6.
In this paper, we mainly tend to consider distributed leader-following fixed-time quantized consensus problem of nonlinear multi-agent systems via impulsive control. An appropriate quantized criterion and some novel control protocols are proposed in order to solve the problem. The protocols proposed integrates the two control strategies from the point of view of reducing communication costs and constraints, which are quantized control and impulsive control. The fixed-time quantized consensus of multi-agent is analyzed in terms of algebraic graph theory, Lyapunov theory and comparison system theory, average impulsive interval. The results show that if some sufficient conditions are met, the fixed-time consensus of multi-agent systems can be guaranteed under impulsive control with quantized relative state measurements. In addition, compared with finite-time consensus, the settling-time of fixed-time quantized consensus does not depend on the initial conditions of each agent but on the parameters of the protocol. Finally, numerical simulations are exploited to illustrate the effectiveness and performance to support our theoretical analysis.  相似文献   

7.
This paper addresses the problem of leader-follower consensus fault-tolerant control for a class of nonlinear multi-agent systems with output constraints. Specifically, a new nonlinear state transformation function is proposed to deal with the asymmetric constraint on output. Moreover, by integrating backstepping and radial basis function neural network approaches, an adaptive consensus control framework is developed with a single parameter estimator, which mitigates the computation of control algorithm in comparison with conventional adaptive approximation based control techniques. Then an adaptive compensation method is proposed to eliminate the effect of actuator failure. Under the proposed control scheme, all the closed-loop signals of the systems are bounded and the consensus tracking error converges to an adjustable small neighborhood of zero. To evaluate the developed control algorithm, a group of four networked two-stage chemical reactors is used to illustrate the effectiveness of the theoretic results obtained.  相似文献   

8.
In this paper, we study the consensus tracking control problem of a class of strict-feedback multi-agent systems (MASs) with uncertain nonlinear dynamics, input saturation, output and partial state constraints (PSCs) which are assumed to be time-varying. An adaptive distributed control scheme is proposed for consensus achievement via output feedback and event-triggered strategy in directed networks containing a spanning tree. To handle saturated control inputs, a linear form of the control input is adopted by transforming the saturation function. The radial basis function neural network (RBFNN) is applied to approximate the uncertain nonlinear dynamics. Since the system outputs are the only available data, a high-gain adaptive observer based on RBFNN is constructed to estimate the unmeasurable states. To ensure that the constraints of system outputs and partial states are never violated, a barrier Lyapunov function (BLF) with time-varying boundary function is constructed. Event-triggered control (ETC) strategy is applied to save communication resources. By using backstepping design method, the proposed distributed controller can guarantee the boundedness of all system signals, consensus tracking with a bounded error and avoidance of Zeno behavior. Finally, the correctness of the theoretical results is verified by computer simulation.  相似文献   

9.
The consensus tacking problem for multi-agent systems with a leader of none control input and unknown control input is studied in this paper. By virtue of the relative state information of neighboring agents, state estimator and disturbance estimator are designed for each follower to estimate the system states and exogenous disturbance, respectively. Meanwhile, a novel control protocol based on two estimators is designed to make tracking error eventually converge to zero. Furthermore, the obtained results are further extended to the leader with unknown control input. A novel state estimator with adaptive time-varying gain is proposed such that consensus tracking condition is independent of the Laplacian matrix with regard to the communication topology. Finally, two examples are presented to verify the feasibility of the proposed control protocol.  相似文献   

10.
This paper is devoted to adaptive neural network control issue for a class of nonstrict-feedback uncertain systems with input delay and asymmetric time-varying state constraints. State-related external disturbances are involved into the system, and the upper bounds of disturbances are assumed as functions of state variables instead of constants. Additionally, during the approximations of unknown functions by neural networks, the online computation burdens are declined sharply, since the norms of neural network weight vectors are only estimated. In the process of dealing with input delay, an auxiliary function is applied such that the conditions for time delay are more general than the ones in existing literature. A novel adaptive neural network controller is designed by constructing the asymmetric barrier Lyapunov function, which guarantees that the output of system has a good tracking performance and the state variables never violate the asymmetric time-varying constraints. Finally, numerical simulations are presented to verify the proposed adaptive control scheme.  相似文献   

11.
This paper addresses the problem of cluster lag consensus for first-order multi-agent systems which can be formulated as moving agents in a capacity-limited network. A distributed control protocol is developed based on local information, and the robustness of the protocol is analyzed by using tools of Frobenius norm, Lyapunov functional and matrix theory. It is shown that when the root agents of the clusters are influenced by the active leader and the intra-coupling among agents is stronger enough, the multi-agent system will reach cluster lag consensus. Moreover, cluster lag consensus for multi-agent systems with a time-varying communication topology and heterogeneous multi-agent systems with a directed topology are studied. Finally, the effectiveness of the proposed protocol is demonstrated by some numerical simulations.  相似文献   

12.
This study examines the leader-following consensus problem of a class of second-order nonlinear multi-agent systems, where the velocity information is supposed to be unmeasurable. Under the setting, this paper presents a novel aperiodically intermittent output feedback control protocol such that all followers reach consensus with the leader, in which a distributed state observer is built for each follower to observe the velocity state. Based on the Lyapunov stability theory and some matrix analysis techniques, a couple of sufficient conditions for the leader-following consensus of the nonlinear multi-agent system under study are obtained even though the velocity state is unavailable. Finally, the effectiveness of the theoretical results is verified by numerical simulation.  相似文献   

13.
This paper deals with the output consensus problem for uncertain nonstrict-feedback leader-follower multi-agent systems with predefined performance. A distributed event-triggered control strategy with dynamic threshold is proposed to update the actual control input and alleviate the computation burden of the communication procedure effectively. The unknown nonstrict-feedback structures are addressed by using the property of radial basis function neural networks. It is worth noting that in practical applications, the predefined performance often alternates between constrained and unconstrained cases in some extreme situations. To overcome this challenge, a novel coordinate transformation technique is incorporated to tackle both the two cases with and without performance constraint in a unified manner. As a result, the proposed event-triggered control approach ensures that the output consensus errors converge to zero asymptotically, and all the signals in the closed-loop system are bounded. Finally, the effectiveness of the proposed protocol is demonstrated by the simulation results.  相似文献   

14.
In this paper, the leader-following consensus problem is investigated by event-triggered control for multi-agent systems subject to time-varying actuator faults. Firstly, for a case of the leader without control input, a distributed event-triggered fault-tolerant protocol is proposed with the help of adaptive gains. Secondly, the proposed protocol is developed by an auxiliary nonlinear function to compensate the effect of the leader’s unknown bounded input. It is shown that under the both obtained protocols the tracking errors converge to an adjustable neighborhood around the origin, meanwhile the Zeno behavior is avoided. Moreover, the protocols are fully distributed in sense that any global information associated with the network is no longer utilized. Finally, numerical examples are presented to show the validity of the obtained protocols.  相似文献   

15.
Practical time-varying output formation tracking problems with collision avoidance, obstacle dodging and connectivity maintenance for high-order multi-agent systems are investigated, and the practical time-varying output formation tracking error is controlled within an arbitrarily small bound. The outputs of followers are designed to track the output of the leader with unknown control input while retaining the predefined time-varying formation. Uncertainties are considered in the dynamics of the followers and the leader. Firstly, distributed extended state observers are developed to estimate the uncertainties and the leader’s unknown control input. A strategy of obstacle dodging is given by designing an ideal secure position for the followers which are in the threatened area of the obstacles. By constructing collision avoidance, obstacle dodging and connectivity maintenance artificial potential functions, corresponding negative gradient terms are calculated to achieve the safety guarantee. Secondly, a practical time-varying output formation tracking protocol is proposed by using distributed extended state observers and the negative gradient terms. Additionally, an approach is presented to determine the gain parameters in the protocol. The stability of the closed-loop multi-agent system with the protocol is analyzed by using Lyapunov stability theory. Finally, a simulation experiment is provided to illustrate the effectiveness of the obtained methods.  相似文献   

16.
This paper investigates the finite-time consensus problem of uncertain nonlinear multi-agent systems with asymmetric time-varying delays and directed communication topology. An auxiliary system is firstly designed to deal with the continuous or discontinuous time-varying communication delays. Based on the finite-time input-to-output framework, a novel consensus scheme relying on local delayed information exchange is proposed. Moreover, by utilizing an auxiliary integrated regressor matrix and vector method, the system uncertainties can be accurately estimated. Then the consensus of multi-agent systems can be achieved within finite time by selecting the control gains simply. Finally, numerical simulations are provided to demonstrate the effectiveness of the proposed control algorithms.  相似文献   

17.
In this paper, the distributed consensus problem of leader-follower multi-agent systems with unknown time-varying coupling gains and parameter uncertainties are investigated, and the fully distributed protocols with the adaptive updating laws of periodic time-varying parameters are designed by using a repetitive learning control approach. By virtue of algebraic graph theory, Barbalat’s lemma and an appropriate Lyapunov-Krasovskii functional, it is shown that each follower agent can asymptotically track the leader even though the dynamic of the leader is unknown to any of them, i.e., the global asymptotic consensus can be achieved. At last, a simulation example is given to illustrate the feasibility and efficiency of the proposed protocols.  相似文献   

18.
This paper considers the distributed tracking control problem for linear multi-agent systems with disturbances and a leader whose control input is nonzero and not available to any follower. Based on the relative output measurements of neighboring agents, a novel distributed observer-based tracking protocol is proposed, where the distributed intermediate estimators are constructed to estimate the leader’s unknown control input and the states of the tracking error system simultaneously, then a distributed tracking protocol is designed based on the derived estimates. It is proved that the states of the tracking error system are uniformly ultimately bounded and an explicit tracking error bound is obtained. A simulation example of aircrafts verifies the effectiveness of the proposed method.  相似文献   

19.
This paper studies the time-varying output formation tracking problems for heterogeneous linear multi-agent systems with multiple leaders in the presence of switching directed topologies, where the agents can have different system dynamics and state dimensions. The outputs of followers are required to accomplish a given time-varying formation configuration and track the convex combination of leaders’ outputs simultaneously. Firstly, using the neighboring relative information, a distributed observer is constructed for each follower to estimate the convex combination of multiple leaders’ states under the influences of switching directed topologies. The convergence of the observer is proved based on the piecewise Lyapunov theory and the threshold for the average dwell time of the switching topologies is derived. Then, an output formation tracking protocol based on the distributed observer and an algorithm to determine the control parameters of the protocol are presented. Considering the features of heterogeneous dynamics, the time-varying formation tracking feasible constraints are provided, and a compensation input is applied to expand the feasible formation set. Sufficient conditions for the heterogeneous multi-agent systems with multiple leaders and switching directed topologies to achieve the desired time-varying output formation tracking under the designed protocol are proposed. Finally, simulation examples are given to validate the theoretical results.  相似文献   

20.
This paper studies the adaptive tracking control problem for a class of uncertain high-order fully actuated (HOFA) systems with actuator faults and full-state constraints. Firstly, we design a novel nonlinear transformation function (NTF) only related to state and constraint boundaries and capable of handling asymmetric time-varying constraints. With the designed function, we obtain an equivalent totally unconstrained HOFA model which is generally simpler to design controllers than first-order state-space model. Then, the adaptive fault-tolerant controller is constructed with the help of the HOFA approach. By applying the Lyapunov stability theory, it is rigorously proved that the output tracking error converges to zero asymptotically, other signals of the resulting closed-loop systems are bounded, and full-state constraints are not violated for all time. Finally, the simulation results verify the efficiency of the proposed control design method.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号