首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this paper, we study the consensus tracking control problem of a class of strict-feedback multi-agent systems (MASs) with uncertain nonlinear dynamics, input saturation, output and partial state constraints (PSCs) which are assumed to be time-varying. An adaptive distributed control scheme is proposed for consensus achievement via output feedback and event-triggered strategy in directed networks containing a spanning tree. To handle saturated control inputs, a linear form of the control input is adopted by transforming the saturation function. The radial basis function neural network (RBFNN) is applied to approximate the uncertain nonlinear dynamics. Since the system outputs are the only available data, a high-gain adaptive observer based on RBFNN is constructed to estimate the unmeasurable states. To ensure that the constraints of system outputs and partial states are never violated, a barrier Lyapunov function (BLF) with time-varying boundary function is constructed. Event-triggered control (ETC) strategy is applied to save communication resources. By using backstepping design method, the proposed distributed controller can guarantee the boundedness of all system signals, consensus tracking with a bounded error and avoidance of Zeno behavior. Finally, the correctness of the theoretical results is verified by computer simulation.  相似文献   

2.
Decentralized adaptive neural backstepping control scheme is developed for uncertain high-order stochastic nonlinear systems with unknown interconnected nonlinearity and output constraints. For the control of high-order nonlinear interconnected systems, it is assumed that nonlinear system functions are unknown. It is for the first time to control stochastic nonlinear high-order systems with output constraints. Firstly, by constructing barrier Lyapunov functions, output constraints are handled. Secondly, at each recursive step, only one adaptive parameter is updated to overcome over-parameterization problems, and RBF neural networks are used to identify unknown nonlinear functions so that the difficulties caused by completely unknown system functions and stochastic disturbances are tackled. Finally, based on the Lyapunov stability method, the decentralized adaptive control scheme via neural networks approximator is proposed, ultimately reducing the number of learning parameters. It is shown that the designed controller can guarantee all the signals of the resulting closed-loop system to be semi-globally uniformly ultimately bounded (SGUUB), and the tracking errors for each subsystem are driven to a small neighborhood of zero. The simulation studies are performed to verify the effectiveness of the proposed control strategy.  相似文献   

3.
This paper investigates adaptive finite-time practical consensus protocols for a class of second-order multiagent systems with a positive odd power, nonsymmetric input dead zone and uncertain dynamics under a directed communication topology. In this study, three major steps are employed to address the existence of the positive odd power, nonsymmetric input dead zone and uncertain dynamics. Overall, based on the technique of adding one power integrator, useful preliminary results are obtained by configuring a suitable fraction power. Furthermore, to circumvent input dead-zone nonlinearity, an adaptive fuzzy logic (FL) method is used to estimate the width of the dead zone. Finally, the difficulty in designing finite-time practical consensus protocols for the multiagent systems with uncertain dynamics is handled by using radial basis function neural networks (RBFNNs) to approximate the related unknown nonlinear functions. Then, given some reasonable assumptions, it is shown that finite-time practical consensus of the second-order multiagent systems is obtained by using the proposed distributed control protocols and adaptive laws. In addition, the proper approach for selecting parameters is provided such that the neighborhood position error and parameter estimate errors for each agent converge to predesigned small regions of the origin in a finite time. The effectiveness of the developed algorithm is finally validated through a numerical simulation.  相似文献   

4.
This paper studies the event-triggered consensus control problem for high-order uncertain nonlinear multi-agent systems with actuator saturation. By using a smooth Lipschitz function to approximate the saturation nonlinearity, an augment system and the Nussbaum function are adopted to deal with the residual terms of saturation nonlinearity based on adaptive backstepping method. Since excessive energy and communication resources will be consumed during the procedure to handle actuator saturation, two event-triggered mechanisms are proposed to save the communication resources and reduce the controllers’ update frequency. Whenever the triggered conditions are satisfied, the control signals transmitted to the actuators are updated and broadcasted to the neighboring area. A ’disturbance-like’ term is integrated so that the event-triggered control problem with actuator saturation can be transformed into a robust problem while the unknown disturbances are tackled by adaptive update laws. Moreover, the requirement for global communication topology known by all the agents is relaxed by introducing new estimators. All the signals in the closed-loop system are uniformly bounded and the consensus tracking errors are exponentially converged to a bounded set. Meanwhile, the Zeno behavior is excluded. Simulation results are employed to validate the advantages of our proposed methods.  相似文献   

5.
This paper studies the problem of observer based fast nonsingular terminal sliding mode control schemes for nonlinear non-affine systems with actuator faults, unknown states, and external disturbances. A hyperbolic tangent function based extended state observer is considered to estimate unknown states, which enhances robustness by estimating external disturbance. Then, Taylor series expansion is employed for the non-affine nonlinear system with actuator faults, which transforms it to an affine form system to simplify disturbance observer and controller design. A finite time disturbance observer is designed to address unknown compound disturbances, which includes external disturbances and system uncertainties. A fast nonsingular terminal sliding mode with exponential function sliding mode is proposed to address output tracking. Simulation results show the proposed scheme is effective.  相似文献   

6.
This paper studies the problem of adaptive neural network (NN) output-feedback control for a group of uncertain nonlinear multi-agent systems (MASs) from the viewpoint of cooperative learning. It is assumed that all MASs have identical unknown nonlinear dynamic models but carry out different periodic control tasks, i.e., each agent system has its own periodic reference trajectory. By establishing a network topology among systems, we propose a new consensus-based distributed cooperative learning (DCL) law for the unknown weights of radial basis function (RBF) neural networks appearing in output-feedback control laws. The main advantage of such a learning scheme is that all estimated weights converge to a small neighborhood of the optimal value over the union of all system estimated state orbits. Thus, the learned NN weights have better generalization ability than those obtained by traditional NN learning laws. Our control approach also guarantees the convergence of tracking errors and the stability of closed-loop system. Under the assumption that the network topology is undirected and connected, we give a strict proof by verifying the cooperative persisting excitation condition of RBF regression vectors. This condition is defined in our recent work and plays a key role in analyzing the convergence of adaptive parameters. Finally, two simulation examples are provided to verify the effectiveness and advantages of the control scheme proposed in this paper.  相似文献   

7.
The objective of this article is to present an adaptive neural inverse optimal consensus tracking control for nonlinear multi-agent systems (MASs) with unmeasurable states. In the control process, firstly, to approximate the unknown state, a new observer is created which includes the outputs of other agents and their estimated information. The neural network is used to reckon the uncertain nonlinear dynamic systems. Based on a new inverse optimal method and the construction of tuning functions, an adaptive neural inverse optimal consensus tracking controller is proposed, which does not depend on the auxiliary system, thus greatly reducing the computational load. The developed scheme not only insures that all signals of the system are cooperatively semiglobally uniformly ultimately bounded (CSUUB), but also realizes optimal control of all signals. Eventually, two simulations provide the effectiveness of the proposed scheme.  相似文献   

8.
This paper explores the design of an anti-saturation adaptive finite-time control strategy with the neural network (NN) technique for the space circumnavigation mission. Before executing the controller design, the analytical solutions of the desired angular velocity and its derivative of the active spacecraft are calculated. Since there are uncertain saturation constraints on control forces and moments in the actual propulsion system, an auxiliary system compensated by an adaptive NN is adopted. The modified auxiliary system no longer needs the precise output values of the actuators. Besides, the hyperbolic tangent function is introduced to design the weight update law for the NN compensator, so that the derivative of the weight estimator will not be amplified by the quadratic of states when the system states are large. It is proved that tracking errors of the system states can converge to a residual set of the origin in finite time. Simulation results show that the maximum amplitudes of the control signals are greatly reduced compared to the classical non-singular terminal sliding-mode control scheme, and that the neural-based compensator can significantly weaken the overshoot and chattering.  相似文献   

9.
This paper addresses the problem of leader-follower consensus fault-tolerant control for a class of nonlinear multi-agent systems with output constraints. Specifically, a new nonlinear state transformation function is proposed to deal with the asymmetric constraint on output. Moreover, by integrating backstepping and radial basis function neural network approaches, an adaptive consensus control framework is developed with a single parameter estimator, which mitigates the computation of control algorithm in comparison with conventional adaptive approximation based control techniques. Then an adaptive compensation method is proposed to eliminate the effect of actuator failure. Under the proposed control scheme, all the closed-loop signals of the systems are bounded and the consensus tracking error converges to an adjustable small neighborhood of zero. To evaluate the developed control algorithm, a group of four networked two-stage chemical reactors is used to illustrate the effectiveness of the theoretic results obtained.  相似文献   

10.
This paper dedicates to dealing with the adaptive neural design problem for uncertain stochastic nonlinear systems with non-lower triangular pure-feedback form and input constraint. On the basis of the mean-value theorem, the pure-feedback structure is first transformed into the desired affine structure, and then the well-known backstepping technology is applied to construct the actual input signal of the controller. Although the considered system has a fairly complex structure, a new adaptive neural tracking controller design frame is established via the flexible application of radial basis function (RBF) neural networks’ (NNs’) structural characteristics. The proposed design frame guarantees the control objective of this paper can be achieved. Finally, a simulation example is given to further illustrate the availability of the proposed control scheme.  相似文献   

11.
This paper addresses the adaptive optimal containment control issue for non-affine nonlinear multi-agent systems in the presence of periodic disturbances. To deal with the disturbed internal dynamics, a fourier series expansion-neural networks-based adaptive identifier is designed for each follower, such that the restrictions posed on the system dynamics are released. Then,an adaptive dynamic programming technique is adopted to acquire the optimized virtual and actual controllers under a simplified actor-critic architecture, where the critic aims to appraise control performance and the actor aims to perform control task. Note that the above updating laws are constructed by the negative gradient of a designed function, which is constructed on the basis of the partial derivative of Hamilton-Jacobi-Bellman equation. Finally, simulation results are provided to show the applicability and effectiveness of the containment control scheme.  相似文献   

12.
This paper investigates the problem of decentralized adaptive backstepping control for a class of large-scale stochastic nonlinear time-delay systems with asymmetric saturation actuators and output constraints. Firstly, the Gaussian error function is employed to represent a continuous differentiable asymmetric saturation nonlinearity, and barrier Lyapunov functions are designed to ensure that the output parameters are restricted. Secondly, the appropriate Lyapunov–Krasovskii functional and the property of hyperbolic tangent functions are used to deal with the unknown unmatched time-delay interactions, and the neural networks are employed to approximate the unknown nonlinearities. At last, based on Lyapunov stability theory, a decentralized adaptive neural control method is proposed, and the designed controller decreases the number of learning parameters. It is shown that the designed controller can ensure that all the closed-loop signals are 4-Moment (or 2 Moment) semi-globally uniformly ultimately bounded (SGUUB) and the tracking error converges to a small neighborhood of the origin. Two examples are provided to show the effectiveness of the proposed method.  相似文献   

13.
This paper focuses on the problem of adaptive tracking quantized control for a class of interconnected pure feedback time delay nonlinear systems. To satisfy the requirement of prescribed performance on the output tracking error, a novel asymmetric tangent barrier Lyapunov function is developed. The decentralized adaptive controller is designed via backstepping method. To deal with the uncertain interconnected nonlinear functions, we design a new virtual control input in the first step. Instead of estimating the bound of each unknown function, we use the adaptive method to estimate the bound of the composite function which is composed of the unknown functions. Thus the over parameterization problem is avoided. It is proved that the output of each subsystem satisfies the prescribed performance requirement and other state variables are bounded. Finally, the simulations are performed and the results verify the effectiveness of the proposed method.  相似文献   

14.
《Journal of The Franklin Institute》2023,360(13):10127-10164
This paper investigates a difficult problem of nonlinear dynamics and motion control of a dual-flexible servo system with an underactuated hand (DFSS-UH). Variation in grasping mass and nonlinear factors of the DFSS-UH including complex flexible deformation and friction torque aggravate the output speed fluctuation, leading to modeling errors in the dynamics, which in turn affects the underactuated hand motion accuracy. A novel neural network sliding mode control (NNSMC) method is designed to control the DFSS-UH. The strategy utilizes neural networks to compensate for dynamics modeling errors, which takes into account neglected nonlinear factors and inaccurate friction torque. The reaching law with the hyperbolic tangent function is proposed to improve sliding mode control, thereby weakening the chattering phenomenon. First of all, the DFSS-UH mechanical model considering many nonlinear factors is established and a dynamic simplification model which ignores higher-order modes is proposed. Secondly, the adaptive law of weighted coefficients is proposed according to the stability of the DFSS-UH. Finally, the physical control platform of the DFSS-UH is built, and simulation and control experiments are conducted. Experimental results show that the improved NNSMC strategy decreases the tracking error of flexible load, thereby enhancing the control accuracy of the DFSS-UH.  相似文献   

15.
This paper considers the topic of adaptive leader-following fault-tolerant tracking control for a class of non-strict feedback nonlinear multi-agent systems with or without state constraints in a unified solution. Through the use of certain transformation techniques, the original constraint system is recast as a new completely unconstrained system. Compared with the existing results, the limitation that the constraint functions need upper bound is relaxed. By employing radial basis function neural networks (RBFNNs) to approximate the unknown functions. A novel adaptive fault-tolerant consensus tracking control (CTC) manner is raised with command filtered backstepping design. Then, through the Lyapunov stability analysis, the proposed scheme can ensure all signals in the closed-loop system are cooperative semi-globally uniformly ultimately bounded (SGUUB). Finally, simulation example confirms the efficiency of the proposed method.  相似文献   

16.
The decentralized tracking control methods for large-scale nonlinear systems are investigated in this paper. A backstepping-based robust decentralized adaptive neural H tracking control method is addressed for a class of large-scale strict feedback nonlinear systems with uncertain disturbances. Under the condition that the nonlinear interconnection functions in subsystems are unknown and mismatched, the decentralized adaptive neural network H tracking controllers are designed based on backstepping technology. Neural networks are used to approximate the packaged multinomial including the unknown interconnections and nonlinear functions in the subsystems as well as the derivatives of the virtual controls. The effect of external disturbances and approximation errors is attenuated by H tracking performance. Whether the external disturbances occur or not, the output tracking errors of the close-loop system are guaranteed to be bounded. A practical example is provided to show the effectiveness of the proposed control approach.  相似文献   

17.
This paper is concerned with the adaptive control problem of a class of output feedback nonlinear systems with unmodeled dynamics and output constraint. Two dynamic surface control design approaches based on integral barrier Lyapunov function are proposed to design controller ensuring both desired tracking performance and constraint satisfaction. The radial basis function neural networks are utilized to approximate unknown nonlinear continuous functions. K-filters and dynamic signal are introduced to estimate the unmeasured states and deal with the dynamic uncertainties, respectively. By theoretical analysis, the closed-loop control system is proved to be semi-globally uniformly ultimately bounded, while the output constraint is never violated. Simulation results demonstrate the effectiveness of the proposed approaches.  相似文献   

18.
This paper focuses on the problem of adaptive output feedback control for a class of uncertain nonlinear systems with input delay and disturbances. Radial basis function neural networks (NNs) are employed to approximate the unknown functions and an NN observer is constructed to estimate the unmeasurable system states. Moreover, an auxiliary system is introduced to compensate for the effect of input delay. With the aid of the backstepping technique and Lyapunov stability theorem, an adaptive NN output feedback controller is designed which can guarantee the boundedness of all the signals in the closed-loop systems. Finally, a simulation example is given to illustrate the effectiveness of the proposed method.  相似文献   

19.
In this paper, the tracking control problem of a class of uncertain strict-feedback nonlinear systems with unknown control direction and unknown actuator fault is studied. By using the neural network control approach and dynamic surface control technique, an adaptive neural network dynamic surface control law is designed. Based on the neural network approximator, the uncertain nonlinear dynamics are approximated. Using the dynamic surface control technique, the complexity explosion problems in the design of virtual control laws and adaptive updating laws can be overcome. Moreover, to solve the unknown control direction and unknown actuator fault problems, a type of Nussbaum gain function is incorporated into the recursive design of dynamic surface control. Based on the designed adaptive control law, it can be confirmed that all of the signals in the closed-loop system are semi-global bounded, and the convergence of the tracking error to the specified small neighborhood of the origin could be ensured by adjusting the designing parameters. Finally, two examples are provided to demonstrate the effectiveness of the proposed adaptive control law.  相似文献   

20.
The tracking problem of the fractional-order nonlinear systems is assessed by extending new event-triggered control designs. The considered dynamics are accompanied by the uncertain strict-feedback form, unknown actuator faults and unknown disturbances. By using the neural networks and the fault compensation method, two adaptive fault compensation event-triggered schemes are designed. Unlike the available control designs, two static and dynamic event-triggered strategies are proposed for the nonlinear fractional-order systems, in a sense that the minimum/average time-interval between two successive events can be prolonged in the dynamic event-triggered approach. Besides, it is proven that the Zeno phenomenon is strictly avoided. Finally, the simulation results prove the effectiveness of the presented control methods.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号