首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A novel nonlinear time-varying model termed as the fuzzy parameter varying (FPV) system is proposed in this research, which inherits both advantages of the conventional T-S fuzzy system in dealing with nonlinear plants and strengths of the linear parameter varying (LPV) system in handling time-varying features. It is, therefore, an attractive mathematical model to efficiently approximate a nonlinear time-varying plant or to serve as a type of time-varying controller. Using the full block S-procedure, sufficient stability conditions have been derived in the form of linear matrix inequalities (LMIs) to test quadratic stability of the open-loop FPV system. Moreover, sufficient conditions have been derived on synthesizing both state feedback and dynamical output feedback fuzzy gain-scheduling controllers that can stabilize the FPV system. An inverted pendulum with a variable length pole is utilized to demonstrate advantages of the FPV system compared to the conventional T-S fuzzy system in representing a practical time-varying nonlinear plant and to validate the controller synthesis conditions.  相似文献   

2.
This paper deals with the stability analysis and fuzzy stabilizing controller design for fuzzy singular systems with time-varying delay. The time-varying delay is composed of two parts: constant part and time-varying part. Based on the idea of delay partitioning, a new Lyapunov–Krasovskii functional is proposed to develop the new delay-dependent stability criteria, which ensures the considered system to be regular, impulse-free and stable. Furthermore, the desired fuzzy controller gains are also presented by solving a set of strict linear matrix inequalities (LMIs). Some numerical examples are given to show the effectiveness and less conservativeness of the proposed methods.  相似文献   

3.
严顺行  姜偕富  杨性序  葛晓华 《科技通报》2011,27(2):177-181,219
考虑了区间时变时滞模糊系统的稳定性问题.利用T-S模糊模型对模糊系统进行了研究,利用线性矩阵不等式的形式给出了此类模糊系统在时滞相关意义下保守性更小的稳定性判据.由于加入了自由矩阵,所得结果保守性更小.并且给出了一个数值例子说明了所得稳定性判据的有效性.  相似文献   

4.
This paper is concerned with the stability analysis of linear systems with time-varying delays. First, by introducing the quadratic terms of time-varying delays and some integral vectors, a more suitable Lyapunov-Krasovskii functional (LKF) is constructed. Second, two new delay-dependent estimation methods are developed in the stability analysis of linear system with time-varying delays, which include a reciprocally convex matrix inequality and an integral inequality. More information about time-varying delays and more free matrices are introduced into the two estimation approaches, which play a key role for obtaining an accurate upper bound of the integral terms in time derivative of LKFs. Third, based on the novel LKFs and new estimation approaches, some less conservative criteria are derived in the form of linear matrix inequality (LMI). Finally, three numerical examples are applied to verify the advantages and effectiveness of the newly proposed methods.  相似文献   

5.
This note is concerned with the static output feedback control problem for two-dimensional (2-D) uncertain stochastic nonlinear systems. The systems under consideration are subjected to time delays, multiplicative noises and randomly occurring missing measurements. A random variable sequence following the Bernoulli distribution with time-varying probability is employed to character the missing measurements which are assumed to occur in a random way. A new gain-scheduling method based on the time-varying probability parameter is proposed to accomplish the design task. By constructing a suitable Lyapunov functional, sufficient conditions to guarantee the systems to be mean-square asymptotically stable are established. The addressed 2-D controller design problem can be reduced to a convex optimization problem by some mathematical techniques. In the last section, a numerical example and the comparative analysis are provided to illustrate the efficiency of our proposed design approach.  相似文献   

6.
This paper addresses the distributed control of delayed interconnected nonlinear systems with time-varying delays in both the local subsystems’ dynamics and the physical interconnections among the subsystems. The Takagi–Sugeno fuzzy model with nonlinear consequent parts (N-TS), which is capable to provide less complex representations than standard T–S fuzzy models, is considered to efficiently deal with this class of complex systems. Then, based on Lyapunov–Krasovskii stability arguments, a synthesis condition is proposed to design a distributed control law such that the origin of the closed-loop interconnected system is locally asymptotically stable together with a guaranteed set of admissible initial conditions for which the validity of the N-TS fuzzy model is ensured. Moreover, a quasi-convex optimization procedure is formulated to enlarge the set of admissible initial conditions. The effectiveness of the proposed synthesis condition is validated in two numerical examples, including an interconnected power network with seven generators.  相似文献   

7.
In this paper, two new estimation approaches namely delay-dependent-matrix-based (DDMB) reciprocally convex inequality approach and DDMB estimation approach, are introduced for stability analysis of time-varying delay systems. Different from existing estimation techniques with constant matrices, the estimation approaches are with delay-dependent matrices, which can employ more free matrices and utilize more information of both time delay and its derivative. Based on the estimation approaches, less conservative stability criteria with lower computational complexity are derived in the form of linear matrix inequalities (LMIs). Finally, two numerical examples are given to illustrate the advantages of the proposed methods.  相似文献   

8.
9.
In this work, we have investigated the problem of assessing stability and designing an appropriate feedback control law for T-S fuzzy systems with time-varying delay. By way of designing a new Lyapunov-Krasovskii functional based on Legendre polynomials and membership functions, we have developed conditions for stability assessment and feedback gain synthesis. The resulting algebraic conditions form a set of hierarchical LMIs which, by increasing the order of the Bessel-Legendre polynomial, compete with the sum of squares in both conservatism and complexity. Finally, two examples are provided to demonstrate the effectiveness of the findings.  相似文献   

10.
This paper is concerned with the controller synthesis for switched Takagi–Sugeno (T–S) fuzzy systems with time-varying delays, parameter uncertainties and process disturbances. A persistent dwell time (PDT) based control law is mainly proposed for the T–S fuzzy systems in presenting of high-frequency motion switches. Different with the most existing literatures, the dynamics of local subsystems are allowed to be unstable during fast switching time intervals as well as the jump time instants. In addition, the maximal period of persistence time is not limited. Under the influences of the time-varying delays, uncertainties and disturbances, the proposed method ensures the overall closed-loop system to be globally uniformly exponentially stable. Moreover, a pre-given H performance can be simultaneously guaranteed. Numerical examples are provided to demonstrate the effectiveness of the proposed method.  相似文献   

11.
This paper studies the robust stochastic stabilization problem for a class of fuzzy Markovian jump systems with time-varying delay and external disturbances via sliding mode control scheme. Based on the equivalent-input-disturbance (EID) approach, an online disturbance estimator is implemented to reject the unknown disturbance effect on the considered system. Specifically, to obtain exact EID estimation Luenberger fuzzy state observer and a low-pass filter incorporated to the closed-loop system. Moreover, novel fuzzy EID-based sliding mode control law is constructed to ensure the stability of the closed-loop system with satisfactory disturbance rejection performance. By employing Lyapunov stability theory and some integral inequalities, a new set of delay-dependent robust stability conditions is derived in terms of linear matrix inequalities (LMIs). The resulting LMI is used to find the gains of the state-feedback controller and the state observer a for the resulting closed-loop system. At last, numerical simulations based on the single-link arm robot model are provided to illustrate the proposed design technique.  相似文献   

12.
In this paper, the distributed iterative learning control for nonholonomic mobile robots with a time-varying reference is investigated, in which the mobile robots are with parametric uncertainties and are not fully actuated. Besides, the control gains of mobile robots are unknown. The leader is with a time-varying reference trajectory, and there is no need to assume that the time-varying reference is linearly parameterized by a set of known functions. A distributed control scheme is designed for each mobile robot based on a set of local compensatory filters designed by its neighborhood information. Stability analysis is established through a set of composite energy function. The uniform convergence of the consensus errors can be guaranteed. An example is given to show that our designed control law is effective.  相似文献   

13.
This paper investigates the problem of stabilization for fuzzy sampled-data systems with variable sampling. A novel Lyapunov–Krasovskii functional (LKF) is introduced to the fuzzy systems. The benefit of the new approach is that the LKF develops more information about actual sampling pattern of the fuzzy sampled-data systems. In addition, some symmetric matrices involved in the LKF are not required to be positive definite. Based on a recently introduced Wirtinger-based integral inequality that has been shown to be less conservative than Jensen’s inequality, much less conservative stabilization conditions are obtained. Then, the corresponding sampled-data controller can be synthesized by solving a set of linear matrix inequalities (LMIs). Finally, an illustrative example is given to show the feasibility and effectiveness of the proposed method.  相似文献   

14.
Using block-pulse functions (BPFs)/shifted Legendre polynomials (SLPs) a unified approach for computing optimal control law of linear time-varying time-delay systems with reverse time terms and quadratic performance index is discussed in this paper. The governing delay-differential equations of dynamical systems are converted into linear algebraic equations by using operational matrices of orthogonal functions (BPFs and SLPs). The problem of finding optimal control law is thus reduced to the problem of solving algebraic equations. One example is included to demonstrate the applicability of the proposed approach.  相似文献   

15.
This paper investigates the problem of designing decentralized impulsive controllers for synchronization of a class of complex dynamical networks (CDNs) about some prescribed goal function. The CDNs are allowed to possess nonidentical nodes and coupling delays. Two cases of time-varying coupling delays are considered: the case where the coupling delays are uniformly bounded, and the case where the derivatives of the coupling delays are not greater than 1. The synchronization analysis for the first case is performed by applying a time-varying Lyapunov function based method combined with Razumikhin-type technique, while the synchronization analysis for the second case is conducted based on a time-varying Lyapunov functional based method. For each case, by utilizing a convex combination technique, the resulting synchronization criterion is formulated as the feasibility problem of a set of linear matrix inequalities (LMIs). Then, sufficient conditions on the existence of a decentralized impulsive controller are presented by employing these newly obtained synchronization criteria. The local impulse gain matrices can be designed by solving a set of LMIs. Finally, two representative examples are given to illustrate the correctness of the theoretical results.  相似文献   

16.
This paper is concerned with the issue of finite-time boundedness of discrete-time uncertain interval type-2 fuzzy systems with time-varying delay and external disturbances via an observer-based reliable control strategy. According to the system output variable, a full-state observer that shares the same membership functions of the plant is constructed to estimate the unknown system states. In addition, a reliable controller subject to observer states and actuator faults is designed to formulate the closed-loop feedback control system, which does not share the same membership functions of the plant. Then, by constructing an appropriate Lyapunov–Krasovskii functional and using the finite-time stability theory, a new set of delay-dependent sufficient conditions guaranteeing the finite-time boundedness of the addressed system is established in the framework of linear matrix inequalities. Furthermore, the explicit expressions of gain matrices of the state observer and the reliable controller are given in terms of the established sufficient conditions. Finally, simulation results are presented to demonstrate the effectiveness of the obtained theoretical results.  相似文献   

17.
In this paper, the problem of synchronization on interval type-2 (IT2) stochastic fuzzy complex dynamical networks (CDNs) with time-varying delay via fuzzy pinning control is fully studied. Firstly, a more general complex network model is considered, which involves the time-varying delay, IT2 fuzzy and stochastic effects. More specifically, IT2 fuzzy model, as a meaningful fuzzy scheme, is investigated for the first time in CDNs. Then, with the aid of Lyapunov stability theory and stochastic analysis technique, some new sufficient criteria are established to ensure synchronization of the addressed systems. Moreover, on basis of the parallel-distributed compensation (PDC) scheme, two effective fuzzy pinning control protocols are proposed to achieve the synchronization. Finally, a numerical example is performed to illustrate the effectiveness and superiority of the derived theoretical results.  相似文献   

18.
This paper deals with the exponential boundary stabilization for a class of Markov jump reaction-diffusion neural networks (MJRDNNs) with mixed time-varying delays, which is described by T-S fuzzy model. It is assumed that observed modes in boundary controller are not synchronized with the system modes. Based on a hidden Markov model (HMM), a novel asynchronous boundary control law is developed by using observed modes. Compared with the existing control strategies for distributed parameter systems, the asynchronous boundary control scheme can not only save the cost of the controller installation, but also bring less conservativeness. A delay-dependent sufficient condition to guarantee the exponentially mean square stability is established for T-S fuzzy MJRDNNs with mixed time-varying delays by constructing a Lyapunov functional and utilizing the vector-value Wirtinger-type inequality. Meanwhile, in order to get the designing scheme of the boundary controller, an equivalent LMI-based sufficient criterion is established. In the end, the effectiveness of the proposed results is illustrated by simulation examples.  相似文献   

19.
This paper deals with the problem of model reference control for linear parameter varying (LPV) systems. The LPV systems under consideration depend on a set of parameters that are bounded and available online. The main contribution of this paper is to design an LPV model reference control scheme for LPV systems whose state-space matrices depend affinely on a set of time-varying parameters that are bounded and available online. The design problem is divided into two subproblems: the design of the coefficient matrices of the controller and the design of the gain of the state feedback controller for LPV systems. The singular value decomposition is used to obtain the coefficient matrices, while the linear matrix inequality methodology is used to obtain the parameter-dependent state feedback gain of the control scheme. A simple numerical example is used to illustrate the proposed design and a coupled-tank process example is used to demonstrate the usefulness and practicality of the proposed design. Simulation and experimental results indicate that the proposed scheme works well.  相似文献   

20.
This paper is concerned with robust stability analysis of second-order linear time-varying (SLTV) systems with time-varying uncertainties (perturbations). With the specific Lyapunov functions, a simple and neat algebraic criterion for testing uniformly asymptotic stability of SLTV systems are derived. Without transformation to a system of first-order equations, the new conditions are imposed directly on the time-varying coefficient matrices of the system. The main feature of the proposed algebraic criterion is that the uncertain coefficient matrices are time-varying and not necessarily symmetric. Finally, the proposed stability conditions are used to design the extending space structures system of the spacecraft. Simulation results are provided to illustrate the convenience and effectiveness of the proposed method.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号