首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Contact interface properties are important in determining the performances of devices that are based on atomically thin two-dimensional (2D) materials, especially for those with short channels. Understanding the contact interface is therefore important to design better devices. Herein, we use scanning transmission electron microscopy, electron energy loss spectroscopy, and first-principles calculations to reveal the electronic structures within the metallic (1T)-semiconducting (2H) MoTe2 coplanar phase boundary across a wide spectral range and correlate its properties to atomic structures. We find that the 2H-MoTe2 excitonic peaks cross the phase boundary into the 1T phase within a range of approximately 150 nm. The 1T-MoTe2 crystal field can penetrate the boundary and extend into the 2H phase by approximately two unit-cells. The plasmonic oscillations exhibit strong angle dependence, that is a red-shift of π+σ (approximately 0.3–1.2 eV) occurs within 4 nm at 1T/2H-MoTe2 boundaries with large tilt angles, but there is no shift at zero-tilted boundaries. These atomic-scale measurements reveal the structure–property relationships of the 1T/2H-MoTe2 boundary, providing useful information for phase boundary engineering and device development based on 2D materials.  相似文献   

2.
Designing new cathodes with high capacity and moderate potential is the key to breaking the energy density ceiling imposed by current intercalation chemistry on rechargeable batteries. The carbonaceous materials provide high capacities but their low potentials limit their application to anodes. Here, we show that Fermi level tuning by p-type doping can be an effective way of dramatically raising electrode potential. We demonstrate that Li(Na)BCF2/Li(Na)B2C2F2 exhibit such change in Fermi level, enabling them to accommodate Li+(Na+) with capacities of 290–400 (250–320) mAh g−1 at potentials of 3.4–3.7 (2.7–2.9) V, delivering ultrahigh energy densities of 1000–1500 Wh kg−1. This work presents a new strategy in tuning electrode potential through electronic band structure engineering.  相似文献   

3.
Active crystal facets can generate special properties for various applications. Herein, we report a (001) faceted nanosheet-constructed hierarchically porous TiO2/rGO hybrid architecture with unprecedented and highly stable lithium storage performance. Density functional theory calculations show that the (001) faceted TiO2 nanosheets enable enhanced reaction kinetics by reinforcing their contact with the electrolyte and shortening the path length of Li+ diffusion and insertion-extraction. The reduced graphene oxide (rGO) nanosheets in this TiO2/rGO hybrid largely improve charge transport, while the porous hierarchy at different length scales favors continuous electrolyte permeation and accommodates volume change. This hierarchically porous TiO2/rGO hybrid anode material demonstrates an excellent reversible capacity of 250 mAh g–1 at 1 C (1 C = 335 mA g–1) at a voltage window of 1.0–3.0 V. Even after 1000 cycles at 5 C and 500 cycles at 10 C, the anode retains exceptional and stable capacities of 176 and 160 mAh g–1, respectively. Moreover, the formed Li2Ti2O4 nanodots facilitate reversed Li+ insertion-extraction during the cycling process. The above results indicate the best performance of TiO2-based materials as anodes for lithium-ion batteries reported in the literature.  相似文献   

4.
For the first time, we report on the preliminary evaluation of gold coated optical fibers (GCOFs) as three-dimensional (3D) electrodes for a membraneless glucose/O2 enzymatic biofuel cell. Two off-the-shelf 125 μm diameter GCOFs were integrated into a 3D microfluidic chip fabricated via rapid prototyping. Using soluble enzymes and a 10 mM glucose solution flowing at an average velocity of 16 mm s−1 along 3 mm long GCOFs, the maximum power density reached 30.0 ± 0.1 μW cm−2 at a current density of 160.6 ± 0.3 μA cm−2. Bundles composed of multiple GCOFs could further enhance these first results while serving as substrates for enzyme immobilization.  相似文献   

5.
Complex oxides with tunable structures have many fascinating properties, though high-quality complex oxide epitaxy with precisely controlled composition is still out of reach. Here we have successfully developed solution-based single-crystalline epitaxy for multiferroic (1-x)BiTi(1-y)/2FeyMg(1-y)/2O3–(x)CaTiO3 (BTFM–CTO) solid solution in large area, confirming its ferroelectricity at the atomic scale with strong spontaneous polarization. Careful compositional tuning leads to a bulk magnetization of 0.07 ± 0.035 μB/Fe at room temperature, enabling magnetically induced polarization switching exhibiting a large magnetoelectric coefficient of 2.7–3.0 × 10−7 s/m. This work demonstrates the great potential of solution processing in large-scale complex oxide epitaxy and establishes novel room-temperature magnetoelectric coupling in epitaxial BTFM–CTO film, making it possible to explore a much wider space of composition, phase, and structure that can be easily scaled up for industrial applications.  相似文献   

6.
Hollow nanoparticles with large specific surface area and high atom utilization are promising catalysts for the hydrogen evolution reaction (HER). We describe herein the design and synthesis of a series of ultra-small hollow ternary alloy nanostructures using a simple one-pot strategy. The same technique was demonstrated for hollow PtNiCu nanoparticles, hollow PtCoCu nanoparticles and hollow CuNiCo nanoparticles. During synthesis, the displacement reaction and oxidative etching played important roles in the formation of hollow structures. Moreover, our hollow PtNiCu and PtCoCu nanoparticles were single crystalline, with an average diameter of 5 nm. Impressively, ultra-small hollow PtNiCu nanoparticles, containing only 10% Pt, exhibited greater electrocatalytic HER activity and stability than a commercial Pt/C catalyst. The overpotential of hollow PtNiCu nanoparticles at 10 mA cm−2 was 28 mV versus reversible hydrogen electrode (RHE). The mass activity was 4.54 A mgPt−1 at −70 mV versus RHE, which is 5.62-fold greater than that of a commercial Pt/C system (0.81 A mgPt−1). Through analyses of bonding and antibonding orbital filling, density functional theory calculations demonstrated that the bonding strength of different metals to the hydrogen intermediate (H*) was in the order of Pt > Co > Ni > Cu. The excellent HER performance of our hollow PtNiCu nanoparticles derives from moderately synergistic interactions between the three metals and H*. This work demonstrates a new strategy for the design of low-cost and high-activity HER catalysts.  相似文献   

7.
We report on low-cost fabrication and high-energy density of full-cell lithium-ion battery (LIB) models. Super-hierarchical electrode architectures of Li2SiO3/TiO2@nano-carbon anode (LSO.TO@nano-C) and high-voltage olivine LiMnPO4@nano-carbon cathode (LMPO@nano-C) are designed for half- and full-system LIB-CR2032 coin cell models. On the basis of primary architecture-power-driven LIB geometrics, the structure keys including three-dimensional (3D) modeling superhierarchy, multiscale micro/nano architectures and anisotropic surface heterogeneity affect the buildup design of anode/cathode LIB electrodes. Such hierarchical electrode surface topologies enable continuous in-/out-flow rates and fast transport pathways of Li+-ions during charge/discharge cycles. The stacked layer configurations of pouch LIB-types lead to excellent charge/discharge rate, and energy density of 237.6 Wh kg−1. As the most promising LIB-configurations, the high specific energy density of hierarchical pouch battery systems may improve energy storage for long-driving range of electric vehicles. Indeed, the anisotropic alignments of hierarchical electrode architectures in the large-scale LIBs provide proof of excellent capacity storage and outstanding durability and cyclability. The full-system LIB-CR2032 coin cell models maintain high specific capacity of ∼89.8% within a long-term life period of 2000 cycles, and average Coulombic efficiency of 99.8% at 1C rate for future configuration of LIB manufacturing and commercialization challenges.  相似文献   

8.
As a non-invasive therapeutic method without penetration-depth limitation, magnetic hyperthermia therapy (MHT) under alternating magnetic field (AMF) is a clinically promising thermal therapy. However, the poor heating conversion efficiency and lack of stimulus–response obstruct the clinical application of magnetofluid-mediated MHT. Here, we develop a ferrimagnetic polyethylene glycol-poly(2-hexoxy-2-oxo-1,3,2-dioxaphospholane) (mPEG-b-PHEP) copolymer micelle loaded with hydrophobic iron oxide nanocubes and emodin (denoted as EMM). Besides an enhanced magnetic resonance (MR) contrast ability (r2 = 271 mM−1 s−1) due to the high magnetization, the specific absorption rate (2518 W/g at 35 kA/m) and intrinsic loss power (6.5 nHm2/kg) of EMM are dozens of times higher than the clinically available iron oxide nanoagents (Feridex and Resovist), indicating the high heating conversion efficiency. Furthermore, this composite micelle with a flowable core exhibits a rapid response to magnetic hyperthermia, leading to an AMF-activated supersensitive drug release. With the high magnetic response, thermal sensitivity and magnetic targeting, this supersensitive ferrimagnetic nanocomposite realizes an above 70% tumor cell killing effect at an extremely low dosage (10 μg Fe/mL), and the tumors on mice are completely eliminated after the combined MHT–chemotherapy.  相似文献   

9.
Most metal–organic frameworks (MOFs) hardly maintain their physical and chemical properties after exposure to alkaline aqueous solutions, thus precluding their use as potential electrode materials for electrochemical energy storage devices. Here, we present the design and synthesis of a highly alkaline-stable metal oxide@MOF composite, Co3O4 nanocube@Co-MOF (Co3O4@Co-MOF), via a controllable and facile one-pot hydrothermal method under highly alkaline conditions. The obtained composite possesses exceptional alkaline stability, retaining its original structure in 3.0 M KOH for at least 15 days. Benefitting from the exceptional alkaline stability, unique structure, and larger surface area, the Co3O4@Co-MOF composite shows a specific capacitance as high as 1020 F g−1 at 0.5 A  g−1 and a high cycling stability with only 3.3% decay after 5000 cycles at 5 A g−1. The as-constructed solid-state flexible device exhibits a maximum energy density of 21.6 mWh cm−3.  相似文献   

10.
Development of novel catalysts for nitrogen reduction at ambient pressures and temperatures with ultrahigh ammonia (NH3) yield and selectivity is challenging. In this work, an atomic catalyst with separated Pd atoms on graphdiyne (Pd-GDY) was synthesized, which shows fascinating electrocatalytic properties for nitrogen reduction. The catalyst has the highest average NH3 yield of 4.45 ± 0.30 mgNH3 mgPd−1 h−1, almost tens of orders larger than for previously reported catalysts, and 100% reaction selectivity in neutral media. Pd-GDY exhibits almost no decreases in NH3 yield and Faradaic efficiency. Density functional theory calculations show that the reaction pathway prefers to perform at the (Pd, C1, C2) active area because of the strongly coupled (Pd, C1, C2), which elevates the selectivity via enhanced electron transfer. By adjusting the p–d coupling accurately, reduction of self-activated nitrogen is promoted by anchoring atom selection, and side effects are minimized.  相似文献   

11.
Charmonium is a bound state of a charmed quark and a charmed antiquark, and a charmoniumlike state is a resonant structure that contains a charmed quark and antiquark pair but has properties that are incompatible with a conventional charmonium state. While operating at center-of-mass energies from 2 to 5 GeV, the BESIII experiment can access a wide mass range of charmonium and charmoniumlike states, and has contributed significantly in this field. We review BESIII results involving conventional charmonium states, including the first observation of the M1 transition ψ(2S) → γηc(2S) and the discovery of the ψ2(3823) state; and report on studies of charmoniumlike states, including the discoveries of the Zc(3900) and Zc(4020) tetraquark candidates, the resolution of the fine structure of the Y(4260) state, the discovery of the new production process e+e → γX(3872) and the uncovering of strong evidence for the commonality among the X(3872), Y(4260) and Zc(3900) states. The prospects for further research at BESIII and proposed future facilities are also presented.  相似文献   

12.
Monolayer transition metal dichalcogenides (TMDs) have attracted considerable attention as atomically thin semiconductors for the ultimate transistor scaling. For practical applications in integrated electronics, large monolayer single crystals are essential for ensuring consistent electronic properties and high device yield. The TMDs available today are generally obtained by mechanical exfoliation or chemical vapor deposition (CVD) growth, but are often of mixed layer thickness, limited single crystal domain size or have very slow growth rate. Scalable and rapid growth of large single crystals of monolayer TMDs requires maximization of lateral growth rate while completely suppressing the vertical growth, which represents a fundamental synthetic challenge and has motivated considerable efforts. Herein we report a modified CVD approach with controllable reverse flow for rapid growth of large domain single crystals of monolayer TMDs. With the use of reverse flow to precisely control the chemical vapor supply in the thermal CVD process, we can effectively prevent undesired nucleation before reaching optimum growth temperature and enable rapid nucleation and growth of monolayer TMD single crystals at a high temperature that is difficult to attain with use of a typical thermal CVD process. We show that monolayer single crystals of 450 μm lateral size can be prepared in 10 s, with the highest lateral growth rate up to 45 μm/s. Electronic characterization shows that the resulting monolayer WSe2 material exhibits excellent electronic properties with carrier mobility up to 90 cm2 V−1 s−1, comparable to that of the best exfoliated monolayers. Our study provides a robust pathway for rapid growth of high-quality TMD single crystals.  相似文献   

13.
Retrieving historical fine particulate matter (PM2.5) data is key for evaluating the long-term impacts of PM2.5 on the environment, human health and climate change. Satellite-based aerosol optical depth has been used to estimate PM2.5, but estimations have largely been undermined by massive missing values, low sampling frequency and weak predictive capability. Here, using a novel feature engineering approach to incorporate spatial effects from meteorological data, we developed a robust LightGBM model that predicts PM2.5 at an unprecedented predictive capacity on hourly (R= 0.75), daily (R= 0.84), monthly (R= 0.88) and annual (R= 0.87) timescales. By taking advantage of spatial features, our model can also construct hourly gridded networks of PM2.5. This capability would be further enhanced if meteorological observations from regional stations were incorporated. Our results show that this model has great potential in reconstructing historical PM2.5 datasets and real-time gridded networks at high spatial-temporal resolutions. The resulting datasets can be assimilated into models to produce long-term re-analysis that incorporates interactions between aerosols and physical processes.  相似文献   

14.
Clean air policies in China have substantially reduced particulate matter (PM2.5) air pollution in recent years, primarily by curbing end-of-pipe emissions. However, reaching the level of the World Health Organization (WHO) guidelines may instead depend upon the air quality co-benefits of ambitious climate action. Here, we assess pathways of Chinese PM2.5 air quality from 2015 to 2060 under a combination of scenarios that link global and Chinese climate mitigation pathways (i.e. global 2°C- and 1.5°C-pathways, National Determined Contributions (NDC) pledges and carbon neutrality goals) to local clean air policies. We find that China can achieve both its near-term climate goals (peak emissions) and PM2.5 air quality annual standard (35 μg/m3) by 2030 by fulfilling its NDC pledges and continuing air pollution control policies. However, the benefits of end-of-pipe control reductions are mostly exhausted by 2030, and reducing PM2.5 exposure of the majority of the Chinese population to below 10 μg/m3 by 2060 will likely require more ambitious climate mitigation efforts such as China''s carbon neutrality goals and global 1.5°C-pathways. Our results thus highlight that China''s carbon neutrality goals will play a critical role in reducing air pollution exposure to the level of the WHO guidelines and protecting public health.  相似文献   

15.
Activation of high-energy triple-bonds of N2 is the most significant bottleneck of ammonia synthesis under ambient conditions. Here, by importing cobalt single clusters as strong electron-donating promoter into the catalyst, the rate-determining step of ammonia synthesis is altered to the subsequent proton addition so that the barrier of N2 dissociation can be successfully overcome. As revealed by density functional theory calculations, the N2 dissociation becomes exothermic over the cobalt single cluster upon the strong electron backdonation from metal to the N2 antibonding orbitals. The energy barrier of the positively shifted rate-determining step is also greatly reduced. At the same time, advanced sampling molecular dynamics simulations indicate a barrier-less process of the N2 approaching the active sites that greatly facilitates the mass transfer. With suitable thermodynamic and dynamic property, a high ammonia yield rate of 76.2 μg h–1 mg and superior Faradaic efficiency of 52.9% were simultaneously achieved.  相似文献   

16.
This paper presents a vertically positioned microfluidic system made of poly(dimethylsiloxane) (PDMS) and glass, which can be applied as a microbubble column (μBC) for biotechnological screening in suspension. In this μBC, microbubbles are produced in a cultivation chamber through an integrated nozzle structure. Thus, homogeneous suspension of biomass is achieved in the cultivation chamber without requiring additional mixing elements. Moreover, blockage due to produced carbon dioxide by the microorganisms—a problem predominant in common, horizontally positioned microbioreactors (MBRs)—is avoided, as the gas bubbles are released by buoyancy at the upper part of the microsystem. The patterned PDMS layer is based on an optimized two-lithographic process. Since the naturally hydrophobic PDMS causes problems for the sufficient production of microbubbles, a method based on polyelectrolyte multilayers is applied in order to allow continuous hydrophilization of the already bonded PDMS-glass-system. The μBC comprises various microelements, including stabilization of temperature, control of continuous bubble formation, and two optical configurations for measurement of optical density with two different sensitivities. In addition, the simple and robust application and handling of the μBC is achieved via a custom-made modular plug-in adapter. To validate the scalability from laboratory scale to microscale, and thus to demonstrate the successful application of the μBC as a screening instrument, a batch cultivation of Saccharomyces cerevisiae is performed in the μBC and compared to shake flask cultivation. Monitoring of the biomass growth in the μBC with the integrated online analytics resulted in a specific growth rate of 0.32 h−1, which is almost identical to the one achieved in the shake flask cultivation (0.31 h−1). Therefore, the validity of the μBC as an alternative screening tool compared to other conventional laboratory scale systems in bioprocess development is proven. In addition, vertically positioned microbioreactors show high potential in comparison to conventional screening tools, since they allow for high density of integrated online analytics and therefore minimize time and cost for screening and guarantee improved control and analysis of cultivation parameters.  相似文献   

17.
Hydrothermal fluid is essential for transporting metals in the crust and mantle. To explore the potential of Cu isotopes as a tracer of hydrothermal-fluid activity, Cu-isotope fractionation factors between Cl-bearing aqueous fluids and silicate magmas (andesite, dacite, rhyolite dacite, rhyolite and haplogranite) were experimentally calibrated. Fluids containing 1.75–14 wt.% Cl were mixed together with rock powders in Au95Cu5 alloy capsules, which were equilibrated in cold-seal pressure vessels for 5–13 days at 800–850°C and 2 kbar. The elemental and Cu-isotopic compositions of the recovered aqueous fluid and solid phases were analyzed by (LA-) ICP–MS and multi-collector inductively coupled plasma mass spectrometry, respectively. Our experimental results show that the fluid phases are consistently enriched in heavy Cu isotope (65Cu) relative to the coexisting silicates. The Cu-isotope fractionation factor (Δ65CuFLUID-MELT) ranges from 0.08 ± 0.01‰ to 0.69 ± 0.02‰. The experimental results show that the Cu-isotopic fractionation factors between aqueous fluids and silicates strongly depend on the Cu speciation in the fluids (e.g. CuCl(H2O), CuCl2 and CuCl32−) and silicate melts (CuO1/2), suggesting that the exsolved fluids may have higher δ65Cu than the residual magmas. Our results suggest the elevated δ65Cu values in Cu-enriched rocks could be produced by addition of aqueous fluids exsolved from magmas. Together with previous studies on Cu isotopes in the brine and vapor phases of porphyry deposits, our results are helpful for better understanding Cu-mineralization processes.  相似文献   

18.
The goal of this work is to determine the role of the autoimmune cells in multiple sclerosis (MS) induction and the immunomodulatory mechanism of therapy with tyrosine kinase inhibitors (TKIs) in MS attenuation. Samples (5 × 105 cells per well) of C6 and primary rat astrocytes were stimulated with 10 ng/mL of platelet-derived growth factor (PDGFbb) as a positive control forming a mouse model of MS. PDGFbb was added to the astrocytes in the absence or presence of 0.1 and 1 μM of imatinib. Proliferation of C6 and primary rat astrocytes samples were assessed for samples staging by the addition of 1 μCi of 3H-thymidine per well. Samples of RAW 264.7 cells were stimulated for 48 h with 10 ng/mL of PDGFbb in the absence or presence of 0.1 and 1 μM of sorafenib. Tumour necrotic factor (TNF) levels in culture supernatants from RAW 264.7 cells were measured by ELISA. The histologic grade (HG) and the level of TNF of the mouse model of MS was 1/5 and 5 times respectively of those in the control one to clarify that MS induction is due to a major decrease in HG inversely proportional to the accompanied increase in TNF level perpetuating local inflammation and demyelination in MS lesion. The addition of 0.1 and 1 μM doses of imatinib increased HG of the mouse model of MS by 6 and 11 times respectively while 0.1 and 1 μM doses of sorafenib decreased TNF level to be 1/2 and 1/5 of that in the mouse model of MS respectively restoring normal rate of TNF level of normal lesion to show that HGand TNF level would be strongly inversely correlated (r = −0.99) in attenuating MS effectively by TKIs therapy but not in an inverse proportion as in MS induction.  相似文献   

19.
Mechanically exfoliated two-dimensional ferromagnetic materials (2D FMs) possess long-range ferromagnetic order and topologically nontrivial skyrmions in few layers. However, because of the dimensionality effect, such few-layer systems usually exhibit much lower Curie temperature (TC) compared to their bulk counterparts. It is therefore of great interest to explore effective approaches to enhance their TC, particularly in wafer-scale for practical applications. Here, we report an interfacial proximity-induced high-TC 2D FM Fe3GeTe2 (FGT) via A-type antiferromagnetic material CrSb (CS) which strongly couples to FGT. A superlattice structure of (FGT/CS)n, where n stands for the period of FGT/CS heterostructure, has been successfully produced with sharp interfaces by molecular-beam epitaxy on 2-inch wafers. By performing elemental specific X-ray magnetic circular dichroism (XMCD) measurements, we have unequivocally discovered that TC of 4-layer Fe3GeTe2 can be significantly enhanced from 140 K to 230 K because of the interfacial ferromagnetic coupling. Meanwhile, an inverse proximity effect occurs in the FGT/CS interface, driving the interfacial antiferromagnetic CrSb into a ferrimagnetic state as evidenced by double-switching behavior in hysteresis loops and the XMCD spectra. Density functional theory calculations show that the Fe-Te/Cr-Sb interface is strongly FM coupled and doping of the spin-polarized electrons by the interfacial Cr layer gives rise to the TC enhancement of the Fe3GeTe2 films, in accordance with our XMCD measurements. Strikingly, by introducing rich Fe in a 4-layer FGT/CS superlattice, TC can be further enhanced to near room temperature. Our results provide a feasible approach for enhancing the magnetic order of few-layer 2D FMs in wafer-scale and render opportunities for realizing realistic ultra-thin spintronic devices.  相似文献   

20.
In the field of RGB diodes, development of a blue organic light-emitting diode (OLED) is a challenge because of the lack of an emitter which simultaneously has a short excited state lifetime and a high theoretical external quantum efficiency (EQE). We demonstrate herein a blue emissive rare earth cerium(III) complex Ce-2 showing a high photoluminescence quantum yield of 95% and a short excited state lifetime of 52.0 ns in doped film, which is considerably faster than that achieved in typical efficient phosphorescence or thermally activated delayed fluorescence emitters (typical lifetimes >1 μs). The corresponding OLED shows a maximum EQE up to 20.8% and a still high EQE of 18.2% at 1000 cd m−2, as well as an operation lifetime 70 times longer than that of a classic phosphorescence OLED. The excellent performance indicates that cerium(III) complex could be a candidate for efficient and stable blue OLEDs because of its spin- and parity-allowed d−f transition from the Ce3+ ion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号