首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Although digital detection of nucleic acids has been achieved by amplification of single templates in uniform microfluidic droplets and widely used for genetic analysis, droplet-based digital detection of proteins has rarely been reported, largely due to the lack of an efficient target amplification method for protein in droplets. Here, we report a key step towards digital detection of proteins using a highly parallel microfluidic droplet approach for single enzyme molecule detection in picoliter droplets via enzyme catalyzed signal amplification. An integrated microfluidic chip was designed for high throughput uniform droplet generation, monolayer droplet collection, incubation, detection, and release. Single β-galatosidase (β-Gal) molecules and the fluorogenic substrate fluorescein di-β-D-galactopyranoside were injected from two separated inlets to form uniform 20 μm droplets in fluorinated oil at a frequency of 6.6 kHz. About 200 000 droplets were captured as a monolayer in a capture well on-chip for subsequent imaging detection. A series of β-Gal solutions at different concentrations were analyzed at the single-molecule level. With no enzyme present, no droplets were found to fluoresce, while brightly fluorescent droplets were observed under single-enzyme molecule conditions. Droplet fluorescence intensity distribution analysis showed that the distribution of enzyme molecules under single-molecule conditions matched well with theoretical prediction, further proving the feasibility of detecting single enzyme molecules in emulsion droplets. Moreover, the population of fluorescent droplets increased as the β-Gal concentration increased. Based on a digital counting method, the measured concentrations of the enzyme were found to match well with input enzyme concentration, establishing the accuracy of the digital detection method for the quantification of β-Gal enzyme molecules. The capability of highly parallel detection of single enzyme molecules in uniform picoliter droplets paves the way to microdroplet based digital detection of proteins.  相似文献   

2.
Droplet-based microfluidic systems enable a variety of biomedical applications from point-of-care diagnostics with third world implications, to targeted therapeutics alongside medical ultrasound, to molecular screening and genetic testing. Though these systems maintain the key advantage of precise control of the size and composition of the droplet as compared to conventional methods of production, the low rates at which droplets are produced limits translation beyond the laboratory setting. As well, previous attempts to scale up shear-based microfluidic systems focused on increasing the volumetric throughput and formed large droplets, negating many practical applications of emulsions such as site-specific therapeutics. We present the operation of a parallel module with eight flow-focusing orifices in the dripping regime of droplet formation for the generation of uniform fine droplets at rates in the hundreds of kilohertz. Elevating the capillary number to access dripping, generation of monodisperse droplets of liquid perfluoropentane in the parallel module exceeded 3.69 × 105 droplets per second, or 1.33 × 109 droplets per hour, at a mean diameter of 9.8 μm. Our microfluidic method offers a novel means to amass uniform fine droplets in practical amounts, for instance, to satisfy clinical needs, with the potential for modification to form massive amounts of more complex droplets.  相似文献   

3.
Droplet based microfluidic systems provide an ideal platform for partitioning and manipulating aqueous samples for analysis. Identifying stable operating conditions under which droplets are generated is challenging yet crucial for real-world applications. A novel three-dimensional microfluidic platform that facilitates the consistent generation and gelation of alginate-calcium hydrogel microbeads for microbial encapsulation, over a broad range of input pressures, in the absence of surfactants is described. The unique three-dimensional design of the fluidic network utilizes a height difference at the junction between the aqueous sample injection and organic carrier channels to induce droplet formation via a surface tension enhanced self-shearing mechanism. Combined within a flow-focusing geometry, under constant pressure control, this arrangement facilitates predictable generation of droplets over a much broader range of operating conditions than that of conventional two-dimensional systems. The impact of operating pressures and geometry on droplet gelation, aqueous and organic material flow rates, microbead size, and bead generation frequency are described. The system presented provides a robust platform for encapsulating single microbes in complex mixtures into individual hydrogel beads, and provides the foundation for the development of a complete system for sorting and analyzing microbes at the single cell level.  相似文献   

4.
In this study, droplet formations in microfluidic double T-junctions (MFDTD) are investigated based on a two-dimensional numerical model with volume of fluid method. Parametric ranges for generating alternating droplet formation (ADF) are identified. A physical background responsible for the ADF is suggested by analyzing the dynamical stability of flow system. Since the phase discrepancy between dispersed flows is mainly caused by non-symmetrical breaking of merging droplet, merging regime becomes the alternating regime at appropriate conditions. In addition, the effects of channel geometries on droplet formation are studied in terms of relative channel width. The predicted results show that the ADF region is shifted toward lower capillary numbers when channel width ratio is less than unity. The alternating droplet size increases with the increase of channel width ratio. When this ratio reaches unity, alternating droplets can be formed at very high water fraction (wf = 0.8). The droplet formation in MFDTD depends significantly on the viscosity ratio, and the droplet size in ADF decreases with the increase of the viscosity ratio. The understanding of underlying physics of the ADF phenomenon is useful for many applications, including nanoparticle synthesis with different concentrations, hydrogel bead generation, and cell transplantation in biomedical therapy.  相似文献   

5.
Here, we utilize microfluidic droplet technology to generate photopolymerizeable polyethylene glycol (PEG) hydrogel microbeads incorporating a fluorescence-based glucose bioassay. A microfluidic T-junction and multiphase flow of fluorescein isothiocyanate dextran, tetramethyl rhodamine isothiocyanate concanavalin A, and PEG in water were used to generate microdroplets in a continuous stream of hexadecane. The microdroplets were photopolymerized mid-stream with ultraviolet light exposure to form PEG microbeads and were collected at the outlet for further analysis. Devices were prototyped in PDMS and generated highly monodisperse 72 ± 2 μm sized microbeads (measured after transfer into aqueous phase) at a continuous flow rate between 0.04 ml/h—0.06 ml/h. Scanning electron microscopy analysis was conducted to analyze and confirm microbead integrity and surface morphology. Glucose sensing was carried out using a Förster resonance energy transfer (FRET) based assay. A proportional fluorescence intensity increase was measured within a 1–10 mM glucose concentration range. Microfluidically synthesized microbeads encapsulating sensing biomolecules offer a quick and low cost method to generate monodisperse biosensors for a variety of applications including cell cultures systems, tissue engineering, etc.  相似文献   

6.
Recent years have witnessed a strong trend towards analysis of single-cells. To access and handle single-cells, many new tools are needed and have partly been developed. Here, we present an improved version of a single-cell printer which is able to deliver individual single cells and beads encapsulated in free-flying picoliter droplets at a single-bead efficiency of 96% and with a throughput of more than 10 beads per minute. By integration of acoustophoretic focusing, the cells could be focused in x and y direction. This way, the cells were lined-up in front of a 40 μm nozzle, where they were analyzed individually by an optical system prior to printing. In agreement with acoustic simulations, the focusing of 10 μm beads and Raji cells has been achieved with an efficiency of 99% (beads) and 86% (Raji cells) to a 40 μm wide center region in the 1 mm wide microfluidic channel. This enabled improved optical analysis and reduced bead losses. The loss of beads that ended up in the waste (because printing them as single beads arrangements could not be ensured) was reduced from 52% ± 6% to 28% ± 1%. The piezoelectric transducer employed for cell focusing could be positioned on an outer part of the device, which proves the acoustophoretic focusing to be versatile and adaptable.  相似文献   

7.
Droplet-based microfluidic technologies are powerful tools for applications requiring high-throughput, for example, in biochemistry or material sciences. Several systems have been proposed for the high-throughput production of monodisperse emulsions by parallelizing multiple droplet makers. However, these systems have two main limitations: (1) they allow the use of only a single disperse phase; (2) they are based on multiple layer microfabrication techniques. We present here a pipette-and-play solution offering the possibility of manipulating simultaneously 10 different disperse phases on a single layer device. This system allows high-throughput emulsion production using aqueous flow rates of up to 26 ml/h (>110 000 drops/s) leading to emulsions with user-defined complex chemical composition. We demonstrate the multiplex capabilities of our system by measuring the kinetics of β-galactosidase in droplets using nine different concentrations of a fluorogenic substrate.  相似文献   

8.
We present dual-mode, on-demand droplet routing in a multiple-outlet microfluidic device using an oil-based magnetic fluid. Magnetite (Fe3O4) nanoparticle-contained oleic acid (MNOA) was used as a carrier phase for droplet generation and manipulation. The water-in-MNOA droplets were selectively distributed in a curved microchannel with three branches by utilizing both a hydrodynamic laminar flow pattern and an external magnetic field. Without the applied magnetic field, the droplets travelled along a hydrodynamic centerline that was displaced at each bifurcating junction. However, in the presence of a permanent magnet, they were repelled from the centerline and diverted into the desired channel when the repelled distance exceeded the minimum offset allocated to the channel. The repelled distance, which is proportional to the magnetic field gradient, was manipulated by controlling the magnet''s distance from the device. To evaluate routing performance, three different sizes of droplets with diameters of 63, 88, and 102 μm were directed into designated outlets with the magnet positioned at varying distances. The result demonstrated that the 102-μm droplets were sorted with an accuracy of ∼93%. Our technique enables on-demand droplet routing in multiple outlet channels by simply manipulating magnet positions (active mode) as well as size-based droplet separation with a fixed magnet position (passive mode).  相似文献   

9.
Biosynthetic microspheres have the potential to address some of the limitations in cell microencapsulation; however, the generation of biosynthetic hydrogel microspheres has not been investigated or applied to cell encapsulation. Droplet microfluidics has the potential to produce more uniform microspheres under conditions compatible with cell encapsulation. Therefore, the aim of this study was to understand the effect of process parameters on biosynthetic microsphere formation, size, and morphology with a co-flow microfluidic method. Poly(vinyl alcohol) (PVA), a synthetic hydrogel and heparin, a glycosaminoglycan were chosen as the hydrogels for this study. A capillary-based microfluidic droplet generation device was used, and by varying the flow rates of both the polymer and oil phases, the viscosity of the continuous oil phase, and the interfacial surface tension, monodisperse spheres were produced from ∼200 to 800 μm. The size and morphology were unaffected by the addition of heparin. The modulus of spheres was 397 and 335 kPa for PVA and PVA/heparin, respectively, and this was not different from the bulk gel modulus (312 and 365 for PVA and PVA/heparin, respectively). Mammalian cells encapsulated in the spheres had over 90% viability after 24 h in both PVA and PVA/heparin microspheres. After 28 days, viability was still over 90% for PVA-heparin spheres and was significantly higher than in PVA only spheres. The use of biosynthetic hydrogels with microfluidic and UV polymerisation methods offers an improved approach to long-term cell encapsulation.  相似文献   

10.
We introduce a novel type of droplet generator that produces droplets of a volume set by the geometry of the droplet generator and not by the flow rates of the liquids. The generator consists of a classic T-junction with a bypass channel. This bypass directs the continuous fluid around the forming droplets, so that they can fill the space between the inlet of the dispersed phase and the exit of the bypass without breaking. Once filled, the dispersed phase blocks the exit of the bypass and is squeezed by the continuous fluid and broken off from the junction. We demonstrate the fixed-volume droplet generator for (i) the formation of monodisperse droplets from a source of varying flow rates, (ii) the formation of monodisperse droplets containing a gradation of solute concentration, and (iii) the parallel production of monodisperse droplets.  相似文献   

11.
Label-free isolation of single cells is essential for the growing field of single-cell analysis. Here, we present a device which prints single living cells encapsulated in free-flying picoliter droplets. It combines inkjet printing and impedance flow cytometry. Droplet volume can be controlled in the range of 500 pl–800 pl by piezo actuator displacement. Two sets of parallel facing electrodes in a 50 μm × 55 μm channel are applied to measure the presence and velocity of a single cell in real-time. Polystyrene beads with <5% variation in diameter generated signal variations of 12%–17% coefficients of variation. Single bead efficiency (i.e., printing events with single beads vs. total number of printing events) was 73% ± 11% at a throughput of approximately 9 events/min. Viability of printed HeLa cells and human primary fibroblasts was demonstrated by culturing cells for at least eight days.  相似文献   

12.
Creating multicellular tumor spheroids is critical for characterizing anticancer treatments since they may provide a better model of the tumor than conventional monolayer culture. Moreover, tumor cell interaction with the extracellular matrix can determine cell organization and behavior. In this work, a microfluidic system was used to form cell-laden core-shell beads which incorporate elements of the extracellular matrix and support the formation of multicellular spheroids. The bead core (comprising a mixture of alginate, collagen, and reconstituted basement membrane, with gelation by temperature control) and shell (comprising alginate hydrogel, with gelation by ionic crosslinking) were simultaneously formed through flow focusing using a cooled flow path into the microfluidic chip. During droplet gelation, the alginate acts as a fast-gelling shell which aids in preventing droplet coalescence and in maintaining spherical droplet geometry during the slower gelation of the collagen and reconstituted basement membrane components as the beads warm up. After droplet gelation, the encapsulated MCF-7 cells proliferated to form uniform spheroids when the beads contained all three components: alginate, collagen, and reconstituted basement membrane. The dose-dependent response of the MCF-7 cell tumor spheroids to two anticancer drugs, docetaxel and tamoxifen, was compared to conventional monolayer culture.  相似文献   

13.
We present a method to perform sample concentration within a lab-on-a-chip using a microfluidic structure which controls the liquid-gas interface through a micropillar array fabricated in polydimethylsiloxane between microfluidic channels. The microstructure confines the liquid flow and a thermal gradient is used to drive evaporation at the liquid-gas-interface. The evaporation occurs in-plane to the microfluidic device, allowing for precise control of the ambient environment. This method is demonstrated with a sample containing 1 μm, 100 nm fluorescent beads and SYTO-9 labelled Escherichia coli bacteria. Over 100 s, the fluorescent beads and bacteria are concentrated by a factor of 10.  相似文献   

14.
Quantifying the motility of micro-organisms is beneficial in understanding their biomechanical properties. This paper presents a simple image-based algorithm to derive the kinetic power and propulsive force of the nematode Caenorhabditis elegans. To avoid unnecessary disturbance, each worm was confined in an aqueous droplet of 0.5 μl. The droplet was sandwiched between two glass slides and sealed with mineral oil to prevent evaporation. For motion visualization, 3-μm fluorescent particles were dispersed in the droplet. Since the droplet formed an isolated environment, the fluid drag and energy loss due to wall frictions were associated with the worm''s kinetic power and propulsion. A microparticle image velocimetry system was used to acquire consecutive particle images for fluid analysis. The short-time interval (Δt < 20 ms) between images enabled quasi real-time measurements. A numerical simulation of the flow in a straight channel showed that the relative error of this algorithm was significantly mitigated as the image was divided into small interrogation windows. The time-averaged power and propulsive force of a N2 adult worm over three swimming cycles were estimated to be 5.2 ± 3.1 pW and 1.0 ± 0.8 nN, respectively. In addition, a mutant, KG532 [kin-2(ce179) X], and a wild-type (N2) worm in a viscous medium were investigated. Both cases showed an increase in the kinetic power as compared with the N2 worm in the nematode growth medium due to the hyperactive nature of the kin-2 mutant and the high viscosity medium used. Overall, the technique deals with less sophisticated calculations and is automation possible.  相似文献   

15.
Teh SY  Khnouf R  Fan H  Lee AP 《Biomicrofluidics》2011,5(4):44113-4411312
In this paper, we present a microfluidic platform for the continuous generation of stable, monodisperse lipid vesicles 20–110 μm in diameter. Our approach utilizes a microfluidic flow-focusing droplet generation design to control the vesicle size by altering the system’s fluid flow rates to generate vesicles with narrow size distribution. Double emulsions are first produced in consecutive flow-focusing channel geometries and lipid membranes are then formed through a controlled solvent extraction process. Since no strong solvents are used in the process, our method allows for the safe encapsulation and manipulation of an assortment of biological entities, including cells, proteins, and nucleic acids. The vesicles generated by this method are stable and have a shelf life of at least 3 months. Here, we demonstrate the cell-free in vitro synthesis of proteins within lipid vesicles as an initial step towards the development of an artificial cell.  相似文献   

16.
Alternating current (AC) dielectrophoresis (DEP) experiments for biological particles in microdevices are typically done at a fixed frequency. Reconstructing the DEP response curve from static frequency experiments is laborious, but essential to ascertain differences in dielectric properties of biological particles. Our lab explored the concept of sweeping the frequency as a function of time to rapidly determine the DEP response curve from fewer experiments. For the purpose of determining an ideal sweep rate, homogeneous 6.08 μm polystyrene (PS) beads were used as a model system. Translatability of the sweep rate approach to ∼7 μm red blood cells (RBC) was then verified. An Au/Ti quadrapole electrode microfluidic device was used to separately subject particles and cells to 10Vpp AC electric fields at frequencies ranging from 0.010 to 2.0 MHz over sweep rates from 0.00080 to 0.17 MHz/s. PS beads exhibited negative DEP assembly over the frequencies explored due to Maxwell-Wagner interfacial polarizations. Results demonstrate that frequency sweep rates must be slower than particle polarization timescales to achieve reliable incremental polarizations; sweep rates near 0.00080 MHz/s yielded DEP behaviors very consistent with static frequency DEP responses for both PS beads and RBCs.  相似文献   

17.
This paper presents a spheroid chip in which three-dimensional (3D) tumor spheroids are not only formed by gravity-driven cell aggregation but also cultured at the perfusion rates controlled by balanced droplet dispensing without fluidic pumps. The previous spheroid chips require additional off-chip processes of spheroid formation and extraction as well as bulky components of fluidic pumps. However, the present spheroid chip, where autonomous medium droplet dispensers are integrated on a well array, achieves the on-chip 3D tumor spheroid formation and perfusion culture using simple structure without bulky fluidic pumps. In the experimental study, we demonstrated that the spheroid chip successfully forms 3D tumor spheroids in the wide diameter range of 220 μm–3.2 mm (uniformity > 90%) using H358, H23, and A549 non-small cell lung cancer cells. At the pump-less perfusion culture (Q = 0.1–0.3 μl/min) of spheroids, the number of H358 cells in the spheroid increased up to 50% from the static culture (Q = 0 μl/min) and the viability of the cultured cells also increased about 10%. Therefore, we experimentally verified that the perfusion environment created by the spheroid chip offers a favourable condition to the spheroids with high increase rate and viability. The present chip achieves on-chip 3D tumor spheroid formation and pump-less perfusion culture with simple structure, thereby exhibiting potential for use in integrated in-vivo-like cell culture systems.  相似文献   

18.
This paper describes the use of electro-hydrodynamic actuation to control the transition between three major flow patterns of an aqueous-oil Newtonian flow in a microchannel: droplets, beads-on-a-string (BOAS), and multi-stream laminar flow. We observed interesting transitional flow patterns between droplets and BOAS as the electric field was modulated. The ability to control flow patterns of a two-phase fluid in a microchannel adds to the microfluidic tool box and improves our understanding of this interesting fluid behavior.Microfluidic technologies have found use in a wide range of applications, from chemical synthesis to biological analysis to materials and energy technologies.1,2 In recent years, there has been increasing interest in two-phase flow and droplet microfluidics, owing to their potential for providing a high-throughput platform for carrying out chemical and biological analysis and manipulations.3–8 Although droplets may be generated in many different ways, such as with electric fields or extrusion through a small nozzle,9–12 the most common microfluidic methods are based on the use of either T-junctions or flow-focusing geometries with which uniform droplets can be formed at high frequency in a steady-state fashion.13,14 Various operations, such as cell encapsulation, droplet fusion, splitting, mixing, and sorting, have also been developed, and these systems have been demonstrated for a wide range of applications, including cell analysis, protein crystallization, and material synthesis.1–17In addition to forming discrete droplets, where a disperse phase is completely surrounded by a continuous phase, it is also possible in certain situations to have different phases flow side-by-side. In fact, multi-stream laminar flow, either of the same phase or different phases, has been exploited for both biochemical analysis and microfabrication.1,2,18–20 Beads-on-a-string (BOAS) is another potential flow pattern, which has been attracting attentions in microfluidics field. BOAS flow, owing to its special flow structures, may be particularly useful in some applications, such as optical-sensor fabrication.21 In BOAS flow, queues of droplets are connected by a series of liquid threads, which makes them look like a fluid necklace with regular periods.21–25 The BOAS pattern is easily found in nature, such as silk beads and cellular protoplasm, and is often encountered in industrial processes as well, such as in electrospinning and anti-misting.21,22 In general, it is thought that BOAS structure occurs mostly in viscoelastic fluids22 and is an unstable structure, which evolves continually and breaks eventually.21–29Flow patterns determine the inter-relations of fluids in a microdevice and are an important parameter to control. Common methods for adjusting microfluidic flow patterns include varying the fluid flow rates, fluid properties, and channel geometries. Additionally, the application of an electric field can be a useful supplement for adjusting microfluidic flow patterns, although most work in this area has been focused on droplets and in some cases also on multi-stream laminar flows.30–33 Here, in addition to forming droplets and two-phase laminar flow with electro-hydrodynamic actuation, we also observed a new stable flow pattern in a non-viscoelastic fluid, BOAS flow. Such flow patterns may find use in controlling the interactions between droplets, such as limited mixing by diffusion between neighboring droplets.To generate droplets, we used the flow-focusing geometry (Figure 1(a)), in which aqueous phase (water) was flown down the middle channel and droplets were pinched off by the oil phase (1-octanol) from the two side channels at the junction; Figure 1(b) shows the droplets formed after the junction. To apply electric field along the main channel where the droplets were formed, we patterned a pair of electrodes upstream and downstream of the junction (Figure 1(a); for experimental details, please see Ref. 34 for supplementary material). The average electric field strength may be calculated from the voltages applied and the distance (1.7 mm) between the two electrodes. When a high voltage was applied along the channel between the two electrodes, the aqueous-oil interface at the flow-focusing junction became charged and behaved like a capacitor. As a result, more negative charges were drawn back upstream towards the positive electrode, and left behind more positive charges at the aqueous-oil interface, which then became encapsulated into the aqueous droplets dispersed in the oil phase.Open in a separate windowFIG. 1.(a) Schematic of the setup. (b) Micrograph showing droplet generation in a flow-focusing junction. The scale bar represents 40 μm.The positively charged aqueous-oil interface was stretched under an applied electric field, and by adjusting the voltage and/or the two-phase flow-rate ratio, we found interestingly that various flow patterns emerged. We tested different combinations of applied voltages and flow-rate ratios and found that most of them resulted in similar flow patterns and transitions between flow patterns.Figure Figure22 illustrates the effects of varying the applied voltages on droplets at a fixed liquid flow rate. With increasing electric-field strength and force, we found it was easier for the aqueous phase to overcome interfacial tension and form droplets. For example, as the voltage increased from 0.0 kV to 0.8 kV (average field strength increased from 0 to 0.47 V/μm), droplet-generation frequencies became slightly higher, and the formed droplets were smaller in volume. Additionally, droplets gradually became more spherical in shape at higher voltages.Open in a separate windowFIG. 2.Images showing the effects of applied voltage on droplet shape and flow pattern. Oil-phase flow rate, 0.5 μl/min; aqueous-phase flow rate, 0.2 μl/min. The scale bar represents 40 μm.As the voltage increased further (e.g., up to 1.0 kV in Figure Figure3),3), the distance between neighboring droplets became smaller, and the aqueous-oil interface at the junction was stretched further toward the downstream channel. At a threshold voltage (1 kV here with corresponding average field strength of 0.59 V/μm), the tip of the aqueous-oil interface would catch up with the droplet that just formed, and the tip of the interface of this newly captured droplet would in turn catch up with the interface of the droplet that formed before it. Consequently, a series of threads would connect all the droplets flowing between the two electrodes, thus resulting in a BOAS flow pattern.Open in a separate windowFIG. 3.Series of images showing the reversibility and synchronicity of a transitional flow pattern between droplets and BOAS (bead-on-a-string). Voltage applied, 1.00 kV (corresponding field strength of 0.59 V/μm); oil-phase flow rate, 0.5 μl/min; aqueous-phase flow rate, 0.2 μl/min. The scale bar represents 40 μm.At voltages near the threshold value, the flow pattern was not stable, but oscillated between droplets flow and BOAS flow. Figure Figure33 is a series of images captured by a high-speed camera that show the flow in this transition region. In Figures 3(a) and 3(b), the string of BOAS became thinner over time, and then the BOAS broke into droplets (Figures 3(c) and 3(d)). The newly formed droplets, however, were not stable either. Thin liquid threads would appear and then connect neighboring droplets, and a new switching period between discrete droplets and BOAS would repeat (Figures 3(e)–3(h)). In addition to this oscillation and reversibility, the flow pattern had a synchronous behavior: all the droplets appeared connected simultaneously by liquid threads or were separated at the same time.When the voltage reached 1.3 kV, which corresponded to an average field strength of 0.76 V/μm, a stable BOAS flow was obtained (Figure 4(a)). BOAS structures are thought to be present mostly in viscoelastic fluids,22 because viscoelasticity is helpful in enhancing the growth of beads and in delaying breakup of the string; thus, the viscoelastic filament has much longer life time than its Newtonian counterpart. Here, with the help of electric field, regular BOAS structures are realized in a non-viscoelastic fluid (water) in microchannels.Open in a separate windowFIG. 4.(a) Micrograph showing BOAS flow in a channel. (b) Profile of the top-half of the BOAS flow recorded continuously at a cross-section (shown in Figure 4(a)) of a channel. Voltage applied, 1.30 kV (corresponding field strength of 0.76 V/μm); oil-phase flow rate, 0.5 μl/min; aqueous-phase flow rate, 0.2 μl/min. The scale bar represents 40 μm.Microenvironment and electric fields alter the common evolution of BOAS structure observed in macroscopic or unbound environments. The BOAS structure formed in our experiments is not a stationary pattern, but a steady-state flowing one. Electric-field force prevents liquid strings from breaking between beads, and thus plays a similar role as elastic force in viscoelastic fluids. Figure 4(b) shows the dynamic BOAS profile, obtained at a fixed plane (shown in Figure 4(a)) perpendicularly across the channel as the BOAS structure passed through it. Droplets and liquid-thread diameters were nearly constant during the sampling time. The longer term experiments (over 3 min) showed there were slight variations of the two diameters in time, but the essential BOAS structure still remained qualitatively the same as a whole.When the voltage was further increased, the string diameter became larger and the droplet diameter became smaller. Because of the low flow-rate ratio (0.4) between the aqueous phase and oil phase used in the experiment depicted in Figure Figure4,4, the flow did not further develop into a multi-stream laminar flow, as would be expected at a higher voltage, and instead became unstable and irregular. When the flow-rate ratio was increased to 1.0 and the voltage was adjusted to 3.0 kV (corresponding field strength of 1.76 V/μm), we observed a stable multi-stream laminar flow (Figure (Figure5).5). The aqueous stream flowed in the channel center surrounded by the oil phase on the sides. This experiment showed that higher electric-field strengths alone would not give rise to another stable flow pattern (i.e., multi-stream laminar flow), but a suitable flow-rate ratio of aqueous phase to oil phase is required for the formation of stable two-phase laminar flow.Open in a separate windowFIG. 5.Micrograph showing multi-stream two-phase laminar flow in the channel. Voltage applied, 3.00 kV (corresponding field strength of 1.76 V/μm); oil-phase flow rate, 0.5 μl/min; aqueous-phase flow rate, 0.5 μl/min. The scale bar represents 40 μm.The flow patterns we observed may be described by a phase diagram (Figure (Figure6),6), which depends on two dimensionless numbers: capillary number, Ca = μaUa/σ, and electric Bond number, Boe = E2(εD/σ). Ca and Boe describe the ratio of viscous force to interfacial tension force and the ratio of electric-field force to interfacial tension force, respectively. Here, μa (1 mPa s), σ (8.5 mN/m), ε (7.1 × 10−10 F/m), E, Ua, and D are, respectively, the aqueous-phase viscosity, aqueous-oil interfacial tension, aqueous-phase permittivity, electric field strength, aqueous-phase velocity, and the hydraulic diameter of the channel at the junction. Figure Figure66 shows clearly that at higher Ca, flow pattern changes gradually from droplet to BOAS and to multi-stream laminar flow with increasing Boe, which indicates the increasing importance of the electric-field force compared with the interfacial tension force. At lower Ca, flow pattern and transition show similar trend with increasing Boe as in the higher Ca case, except that multi-stream laminar flow is not observed. The relatively higher viscous force at higher Ca may be necessary for transitioning to the multi-stream laminar flow regime. In addition, Figure Figure66 shows that the BOAS window at the lower Ca is smaller than that at the higher Ca.Open in a separate windowFIG. 6.Phase diagram showing different flow patterns in the Ca and Boe space. Hollow symbols: oil-phase flow rate, 0.5 μl/min; aqueous-phase flow rate, 0.5 μl/min. Solid symbols: oil-phase flow rate, 0.5 μl/min; aqueous-phase flow rate, 0.2 μl/min.In summary, we showed the ability to use electric fields to generate and control different flow patterns in two-phase flow. With the aid of an applied field, we were able to generate BOAS flow patterns in a non-viscoelastic fluid, a pattern that typically requires a viscoelastic fluid. The BOAS structure was stable and remained as long as the applied electric field was on. We also report transitional flow patterns, those between droplets and BOAS exhibited both good reversibility as well as synchronicity. And with a suitable flow-rate ratio between the two phases, BOAS flow could be transitioned into a stable two-phase laminar flow by applying a sufficiently high field strength. Finally, a phase diagram was presented to describe quantitatively the flow-pattern regimes using capillary number and electric Bond number. The phenomena we report here on the properties of two-phase flow under an applied electric field may find use in developing a different approach to exert control over droplet based or multi-phase laminar-flow based operations and assays, and also aid in understanding the physics of multi-phase flow.  相似文献   

19.
Catechol-O-methyl transferase (COMT) enzyme catalyzes the metabolism of dopamine and other catechols in the brain. Several articles investigated catechol-O-methyltransferase (COMT) Val158Met polymorphism as risk factor for alcohol dependence (AD) but the results were inconclusive. The aim of present meta-analysis was to evaluate the association of Val158Met (COMT) polymorphism with AD. Authors performed keyword search of the 4 electronic databases—Pubmed, Google Scholar, Springer Link and Science Direct databases up to December 31, 2019. Total eighteen studies that investigated the association of Val158Met polymorphism with AD were retrieved. The pooled results from the meta-analysis (2278 AD cases and 3717 healthy controls) did not show association with AD using all 5 genetic models (allele contrast model: OR = 1.02, 95% CI = 0.90–1.14, p = 0.03; homozygote model: OR = 1.06, 95% CI = 0.81–1.38, p = 0.69; dominant model: OR = 0.99, 95% CI = 0.85–1.14, p = 0.87; co-dominant model: OR = 0.97, 95% CI = 0.86–1.11, p = 0.71; recessive model: OR = 1.05;95% CI = 0.85–1.29, p = 0.61). Results of subgroup analysis showed that Val158Met is not risk for AD in Asian and Caucasian population. In conclusion, COMT Val158Met is not a risk factor for alcohol dependence.  相似文献   

20.
In healthcare practice, the sedimentation rate of red blood cells (erythrocytes) is a widely used clinical parameter for screening of several ailments such as stroke, infectious diseases, and malignancy. In a traditional pathological setting, the total time taken for evaluating this parameter varies typically from 1 to 2 h. Furthermore, the volume of human blood to be drawn for each test, following a gold standard laboratory technique (alternatively known as the Westergren method), varies from 4 to 5 ml. Circumventing the above constraints, here we propose a rapid (∼1 min) and highly energy efficient method for the simultaneous determination of hematocrit and erythrocyte sedimentation rate (ESR) on a microfluidic chip, deploying electrically driven spreading of a tiny drop of blood sample (∼8 μl). Our unique approach estimates these parameters by correlating the same with the time taken by the droplet to spread over a given radius, reproducing the results from more elaborate laboratory settings to a satisfactory extent. Our novel methodology is equally applicable for determining higher ranges of ESR such as high concentration of bilirubin and samples corresponding to patients with anemia and patients with some severe inflammation. Furthermore, the minimal fabrication steps involved in the process, along with the rapidity and inexpensiveness of the test, render the suitability of the strategy in extreme point-of-care settings.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号