首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
2.
Plasmonics is generally divided into two categories: surface plasmon resonance (SPR) of electromagnetic modes propagating along a (noble) metal/dielectric interface and localized SPRs (LSPRs) on nanoscopic metallic structures (particles, rods, shells, holes, etc.). Both optical transducer concepts can be combined with and integrated in microfluidic devices for biomolecular analyte detections, with the benefits of small foot-print for point-of-care detection, low-cost for one-time disposal, and ease of being integrated into an array format. The key technologies in such integration include the plasmonic chip, microfluidic channel fabrication, surface bio-functionalization, and selection of the detection scheme, which are selected according to the specifics of the targeting analytes. This paper demonstrates a few examples of the many versions of how to combine plasmonics and integrated microfluidics, using different plasmonic generation mechanisms for different analyte detections. One example is a DNA sensor array using a gold film as substrate and surface plasmon fluorescence spectroscopy and microscopy as the transduction method. This is then compared to grating-coupled SPR for poly(ethylene glycol) thiol interaction detected by angle interrogation, gold nanohole based LSPR chip for biotin-strepavidin detection by wavelength shift, and gold nanoholes/nanopillars for the detection of prostate specific antigen by quantum dot labels excited by the LSPR. Our experimental results exemplified that the plasmonic integrated microfluidics is a promising tool for understanding the biomolecular interactions and molecular recognition process as well as biosensing, especially for on-site or point-of-care diagnostics.  相似文献   

3.
水声是人类迄今为止所知道的唯一能在海洋里远距离传播的能量形式。其他的物理媒介,如可见光、电磁波、激光等在海水里传播时会很快衰减掉,因而无法传向远方。凡是利用水声能量进行观测、通讯的系统,均称为声呐系统。水声信号处理和声呐技术是一门发展迅速、需求推动力强大、应用前景异常广阔的学科。在声学领域的众多分支学科中,没有其他学科像水声学那样,其发展受着战争需求的推动。反过来,水声学的发展又为水下战武器装备的研制和创新注入活力。文章介绍我国改革开放40年来水声信号处理和声呐技术领域的研究进展和发展前景。包括水声信号建模、声场匹配、海洋波导和内波现象的探索与研究、水声信道的时/空相关特性、水下目标辐射噪声的提取及检测技术、高分辨力水下成像技术,以及水下语音、图像传输和抗干扰技术。文章还介绍了我国"863"计划海洋监测主题所取得的成就。提出了我国水声信号处理和声呐技术领域的发展前景,包括深海声学、北极声学、安静型潜艇辐射噪声检测、水下-水面-空天一体化信息获取和融合技术等,以及在建设海洋强国战略中不可替代的独特作用。  相似文献   

4.
The development of widely applicable point-of-care sensing and diagnostic devices can benefit from simple and inexpensive fabrication techniques that expedite the design, testing, and implementation of lab-on-a-chip devices. In particular, electrodes integrated within microfluidic devices enable the use of electrochemical techniques for the label-free detection of relevant analytes. This work presents a novel, simple, and cost-effective bench-top approach for the integration of high surface area three-dimensional structured electrodes fabricated on polystyrene (PS) within poly(dimethylsiloxane) (PDMS)-based microfluidics. Optimization of PS-PDMS bonding results in integrated devices that perform well under pressure and fluidic flow stress. Furthermore, the fabrication and bonding processes are shown to have no effect on sensing electrode performance. Finally, the on-chip sensing capabilities of a three-electrode electrochemical cell are demonstrated with a model redox compound, where the high surface area structured electrodes exhibit ultra-high sensitivity. We propose that the developed approach can significantly expedite and reduce the cost of fabrication of sensing devices where arrays of functionalized electrodes can be used for point-of-care analysis and diagnostics.  相似文献   

5.
Blood can be a window to health, and as a result, is the most intensively studied human biofluid. Blood tests can diagnose diseases, monitor therapeutic drugs, and provide information about the health of an individual. Rapid response blood tests are becoming increasingly essential, especially when subsequent treatment is required. Toward this need, paper-based devices have been excellent tools for performing blood tests due to their ability to conduct rapid and low-cost diagnostics and analyses in a non-laboratory environment. In this Perspective, we review recent advances in paper-based blood tests, particularly focusing on the specific techniques and assays applied. Additionally, we discuss the future of these paper-based devices, such as how the signal intensity can be enhanced and how the in situ synthesis of nanomaterials can be used to improve the sensitivity, functionality, and operational simplicity. With these advances, paper-based devices are becoming increasingly valuable tools for point-of-care blood tests in various practical scenarios.  相似文献   

6.
The usability of many high-throughput lab-on-a-chip devices in point-of-care applications is currently limited by the manual data acquisition and analysis process, which are labor intensive and time consuming. Based on our original design in the biochemical reactions, we proposed here a universal approach to perform automatic, fast, and robust analysis for high-throughput array-based microfluidic immunoassays. Inspired by two-dimensional (2D) barcodes, we incorporated asymmetric function patterns into a microfluidic array. These function patterns provide quantitative information on the characteristic dimensions of the microfluidic array, as well as mark its orientation and origin of coordinates. We used a computer program to perform automatic analysis for a high-throughput antigen/antibody interaction experiment in 10 s, which was more than 500 times faster than conventional manual processing. Our method is broadly applicable to many other microchannel-based immunoassays.  相似文献   

7.
Nowadays, researchers are investing their time and devoting their efforts in developing and motivating the 6G vision and resources that are not available in 5G. Edge computing and autonomous vehicular driving applications are more enhanced under the 6G services that are provided to successfully operate tasks. The huge volume of data resulting from such applications can be a plus in the AI and Machine Learning (ML) world. Traditional ML models are used to train their models on centralized data sets. Lately, data privacy becomes a real aspect to take into consideration while collecting data. For that, Federated Learning (FL) plays nowadays a great role in addressing privacy and technology together by maintaining the ability to learn over decentralized data sets. The training is limited to the user devices only while sharing the locally computed parameter with the server that aggregates those updated weights to optimize a global model. This scenario is repeated multiple rounds for better results and convergence. Most of the literature proposed client selection methods to converge faster and increase accuracy. However, none of them has targeted the ability to deploy and select clients in real-time wherever and whenever needed. In fact, some mobile and vehicular devices are not available to serve as clients in the FL due to the highly dynamic environments and/or do not have the capabilities to accomplish this task. In this paper, we address the aforementioned limitations by introducing an on-demand client deployment in FL offering more volume and heterogeneity of data in the learning process. We make use of containerization technology such as Docker to build efficient environments using any type of client devices serving as volunteering devices, and Kubernetes utility called Kubeadm to monitor the devices. The performed experiments illustrate the relevance of the proposed approach and the efficiency of the deployment of clients whenever and wherever needed.  相似文献   

8.
The emerging technologies on mobile-based diagnosis and bioanalytical detection have enabled powerful laboratory assays such as enzyme-linked immunosorbent assay (ELISA) to be conducted in field-use lab-on-a-chip devices. In this paper, we present a low-cost universal serial bus (USB)-interfaced mobile platform to perform microfluidic ELISA operations in detecting the presence and concentrations of BDE-47 (2,2′,4,4′-tetrabromodiphenyl ether), an environmental contaminant found in our food supply with adverse health impact. Our point-of-care diagnostic device utilizes flexible interdigitated carbon black electrodes to convert electric current into a microfluidic pump via gas bubble expansion during electrolytic reaction. The micropump receives power from a mobile phone and transports BDE-47 analytes through the microfluidic device conducting competitive ELISA. Using variable domain of heavy chain antibodies (commonly referred to as single domain antibodies or Nanobodies), the proposed device is sensitive for a BDE-47 concentration range of 10−3–104 μg/l, with a comparable performance to that uses a standard competitive ELISA protocol. It is anticipated that the potential impact in mobile detection of health and environmental contaminants will prove beneficial to our community and low-resource environments.  相似文献   

9.
In this paper, we lay out a relational approach for indexing and retrieving photographs from a collection. The increase of digital image acquisition devices, combined with the growth of the World Wide Web, requires the development of information retrieval (IR) models and systems that provide fast access to images searched by users in databases. The aim of our work is to develop an IR model suited to images, integrating rich semantics for representing this visual data and user queries, which can also be applied to large corpora.  相似文献   

10.
The advent of connected devices and omnipresence of Internet have paved way for intruders to attack networks, which leads to cyber-attack, financial loss, information theft in healthcare, and cyber war. Hence, network security analytics has become an important area of concern and has gained intensive attention among researchers, off late, specifically in the domain of anomaly detection in network, which is considered crucial for network security. However, preliminary investigations have revealed that the existing approaches to detect anomalies in network are not effective enough, particularly to detect them in real time. The reason for the inefficacy of current approaches is mainly due the amassment of massive volumes of data though the connected devices. Therefore, it is crucial to propose a framework that effectively handles real time big data processing and detect anomalies in networks. In this regard, this paper attempts to address the issue of detecting anomalies in real time. Respectively, this paper has surveyed the state-of-the-art real-time big data processing technologies related to anomaly detection and the vital characteristics of associated machine learning algorithms. This paper begins with the explanation of essential contexts and taxonomy of real-time big data processing, anomalous detection, and machine learning algorithms, followed by the review of big data processing technologies. Finally, the identified research challenges of real-time big data processing in anomaly detection are discussed.  相似文献   

11.
Analytical functioning of a point-of-care analyzer, i-Smart 30 (i-sens: Seoul, South Korea), for electrolyte quantification was investigated at Sant Parmanand Hospital, a tertiary-care hospital in Delhi, India. Samples that were received for electrolyte assay were assayed, double-blinded for their Na and K level using the arterial blood gas analyzer, the ABL 555 (Radiometer, Copenhagen) and the i-Smart 30 electrolyte analyzer. There was satisfactory correlation between the results obtained with the two analyzers with an encouraging bias, standard deviation and the 95 % limits of agreement between the data generated for Na and K levels. The performance of the i-Smart 30 would be satisfactory during the point-of-care measurements of Na and K levels in emergency rooms and clinical laboratories with inadequate infrastructure only if its day-to-day performance was monitored to ensure reliability of the generated reports.  相似文献   

12.
A universal coagulation test that reliably detects prolonged coagulation time in patients, irrespective of the anticoagulant administered, has not been available to date. An easily miniaturised, novel μ-fluidic universal coagulation test employing surface acoustic waves (SAW) is presented here. SAW was employed to instantly mix and recalcify 6 μl citrated whole blood and image correlation analysis was used to quantify clot formation kinetics. The detection of clinically relevant anticoagulant dosing with old anticoagulants (unfractionated heparin, argatroban) and new anticoagulants (dabigatran, rivaroxaban) has been tested and compared to standard plasma coagulation assays. The applicability of this novel method has been confirmed in a small patient population. Coagulation was dose-proportionally prolonged with heparin, argatroban, dabigatran, and rivaroxaban, comparable to standard tests. Aspirin and clopidogrel did not interfere with the SAW-induced clotting time (SAW-CT), whereas the strong GPIIb/IIIa-inhibitor abciximab did interfere. Preliminary clinical data prove the suitability of the SAW-CT in patients being treated with warfarin, rivaroxaban, or dabigatran. The system principally allows assessment of whole blood coagulation in humans in a point-of-care setting. This method could be used in stroke units, emergency vehicles, general and intensive care wards, as well as for laboratory and home testing of coagulation.  相似文献   

13.
Techniques used to prepare clinical samples have been perfected for use in diagnostic testing in a variety of clinical situations, e.g., to extract, concentrate, and purify respiratory virus particles. These techniques offer a high level of purity and concentration of target samples but require significant equipment and highly trained personnel to conduct, which is difficult to achieve in resource-limited environments where rapid testing and diagnostics are crucial for proper handling of respiratory viruses. Microfluidics has popularly been utilized toward rapid virus detection in resource-limited environments, where most devices focused on detection rather than sample preparation. Initial microfluidic prototypes have been hindered by their reliance on several off-chip preprocessing steps and external laboratory equipment. Recently, sample preparation methods have also been incorporated into microfluidics to conduct the virus detection in an all-in-one, automated manner. Extraction, concentration, and purification of viruses have been demonstrated in smaller volumes of samples and reagents, with no need for specialized training or complex machinery. Recent devices show the ability to function independently and efficiently to provide rapid, automated sample preparation as well as the detection of viral samples with high efficiency. In this review, methods of microfluidic sample preparation for the isolation and purification of viral samples are discussed, limitations of current systems are summarized, and potential advances are identified.  相似文献   

14.
The introduction of machine learning (ML), as the engine of many artificial intelligence (AI)-enabled systems in organizations, comes with the claim that ML models provide automated decisions or help domain experts improve their decision-making. Such a claim gives rise to the need to keep domain experts in the loop. Hence, data scientists, as those who develop ML models and infuse them with human intelligence during ML development, interact with various ML stakeholders and reflect their views within ML models. This interaction comes with (often conflicting) demands from various ML stakeholders and potential tensions. Building on the theories of effective use and wise reasoning, this mixed method study proposes a model to better understand how data scientists can use wisdom for managing these tensions when they develop ML models. In Study 1, through interviewing 41 analytics and ML experts, we investigate the dimensions of wise reasoning in the context of ML development. In Study 2, we test the overall model using a sample of 249 data scientists. Our results confirm that to develop effective ML models, data scientists need to not only use ML systems effectively, but also practice wise reasoning in their interactions with domain experts. We discuss the implications of these findings for research and practice.  相似文献   

15.
农村居民点演化数据制备综述   总被引:1,自引:0,他引:1  
李换换  宋伟  张艳 《资源科学》2019,41(4):689-700
精准、完备的农村居民点时空数据是开展农村居民点演化研究的重要数据基础。由于农村居民点规模相对较小、分布散乱的特征,高精度长时间序列的农村居民点数据制备一直是困扰农村居民点演化研究的一个难点。本文分别从长期、中期和短期时间跨度上,对农村居民点时空数据的获取来源、获取方法以及数据时空分辨率和精度进行了梳理和评述,分析了不同时间跨度上农村居民点数据获取方法的优缺点和适用性。结果表明:长期和中期时间跨度上农村居民点数据的获取主要依赖于对历史文献资料及历史地形图的收集和电子化处理,因此地域资料的缺失成为这两个时期数据制备的主要难点;而短期时间跨度内农村居民点数据制备主要依靠卫星遥感、航空遥感等现代技术手段,高精度农村居民点数据获取难度大、成本高是这一时期数据制备的主要难点。为此,今后的数据制备应注重历史学、考古学等学科间的融合,拓展居民点历史信息的来源;此外,尽可能利用Google Earth、高分二号等免费高精度遥感影像,耦合遥感解译、口述历史、实地调查和入户访问等多种手段,构建一套完备的农村居民点空间数据集,充分实现数据共享。  相似文献   

16.
We developed a novel strategy for fabrication of microfluidic paper-based analytical devices (μPADs) by selective wet etching of hydrophobic filter paper using a paper mask having a specific design. The fabrication process consists of two steps. First, the hydrophilic filter paper was patterned hydrophobic by using trimethoxyoctadecylsilane (TMOS) solution as the patterning agent. Next, a paper mask penetrated with NaOH solution (containing 30% glycerol) was aligned onto the hydrophobic filter paper, allowing the etching of the silanized filter paper by the etching reagent. The masked region turned highly hydrophilic whereas the unmasked region remains highly hydrophobic. Thus, hydrophilic channels, reservoirs, and detection zones were generated and delimited by the hydrophobic barriers. The effects of some factors including TMOS concentration, etching temperature, etching time, and NaOH concentration on fabrication of μPAD were studied. Being free of any expensive equipment, metal mask and expensive reagents, this rapid, simple, and cost-effective method could be used to fabricate μPAD by untrained personnel with minimum cost. A flower-shaped μPAD fabricated by this presented method was applied to the glucose assay in artificial urine samples with good performance, indicating its feasibility as a quantitative analysis device. We believe that this method would be very attractive to the development of simple microfluidic devices for point-of-care applications in clinical diagnostics, food safety, and environmental protection.  相似文献   

17.
Mucopolysaccharidoses, a group of inherited disorders are associated with defects in glycosaminoglycan metabolism. Thus, assessment of urinary glycosaminoglycan is used as a screening test for mucopolysaccharidoses. The detection methods range from qualitative spot tests to quantification using metachromatic dyes. In our laboratory we optimized a spectrophotometric quantitative method using a metachromatic dye, dimethylmethylene blue. Heparan sulfate was used for quantification. The glycosaminoglycan–dye complex showed a marked shift in color with increase in concentration. The color complex was quantified at 520 nm. The method was linear from 10–89 mg/L. An age matched normal range was obtained in 177 healthy individuals, grouped in 8 different age groups from neonates to adults. Urinary glycosaminoglycan concentration varied distinctly amongst the study population wherein the lowest range in healthy neonates was more than 3 times the upper limit of healthy adults. Urine samples from 10 patients with mucopolysaccharidoses were also included in the study for clinical validation. The method qualified both analytical and clinical validation and was found to be simple, robust and ideal to be offered as a screening test for mucopplysaccharidoses in a routine clinical chemistry laboratory.  相似文献   

18.
Conventional grant-based random access scheme is inappropriate to massive Internet of Things (IoT) connectivity since massive devices results in large number of collisions. This is unacceptable for the low latency requirement in 5 G and future networks. It is also not possible to assign orthogonal pilot sequences to all users to perform user activity detection (UAD) due to the massive number of devices and limited channel coherence time. In this paper, a novel grant-free (GF) UAD scheme is proposed with extremely low complexity and latency in an IoT network with a massive number of users. We exploit multiple antennas at the base station (BS) to produce spatial filtering by a fixed beamforming network (FBN), there then the inter-beam interference can be mitigated. Moreover, intra-beam interference is removed in temporal domain by orthogonal multiple access (OMA) technology. Joint UAD and multiuser detection (MUD) is realized by a bank of spatial-temporal matched filters at BS. The proposed method is efficient and the complexity is much less than the existing compressed sensing (CS)-based GF non-orthogonal multiple access (GFNOMA) algorithms. Performances of the proposed method is extensively analyzed in terms of the successful activity detection rate (SADR) as well as the Receiver operating characteristic (ROC) based on Neyman-Pearson (NP) decision rule. Numerical results demonstrate that it is comparable to the recently proposed iterative Maximum Likelihood (ML) algorithm, yet the computation load of the proposed scheme is extensively reduced.  相似文献   

19.
The speed of high-resolution optical imaging has been a rate-limiting factor for meso-scale mapping of brain structures and functional circuits, which is of fundamental importance for neuroscience research. Here, we describe a new microscopy method of Volumetric Imaging with Synchronized on-the-fly-scan and Readout (VISoR) for high-throughput, high-quality brain mapping. Combining synchronized scanning beam illumination and oblique imaging over cleared tissue sections in smooth motion, the VISoR system effectively eliminates motion blur to obtain undistorted images. By continuously imaging moving samples without stopping, the system achieves high-speed 3D image acquisition of an entire mouse brain within 1.5 hours, at a resolution capable of visualizing synaptic spines. A pipeline is developed for sample preparation, imaging, 3D image reconstruction and quantification. Our approach is compatible with immunofluorescence methods, enabling flexible cell-type specific brain mapping and is readily scalable for large biological samples such as primate brains. Using this system, we examined behaviorally relevant whole-brain neuronal activation in 16 c-Fos-shEGFP mice under resting or forced swimming conditions. Our results indicate the involvement of multiple subcortical areas in stress response. Intriguingly, neuronal activation in these areas exhibits striking individual variability among different animals, suggesting the necessity of sufficient cohort size for such studies.  相似文献   

20.
Microfluidic technologies have several advantages in sample preparation for diagnostics but suffer from the need for an external operation system that hampers user-friendliness. To overcome this limitation in microfluidic technologies, a number of user-friendly methods utilizing capillary force, degassed poly(dimethylsiloxane), pushbutton-driven pressure, a syringe, or a pipette have been reported. Among these methods, the pushbutton-driven, pressure-based method has a great potential to be widely used as a user-friendly sample preparation tool for point-of-care testing or portable diagnostics. In this Perspective, we focus on the pushbutton-activated microfluidic technologies toward a user-friendly sample preparation tool. The working principle and recent advances in pushbutton-activated microfluidic technologies are briefly reviewed, and future perspectives for wide application are discussed in terms of integration with the signal analysis system, user-dependent variation, and universal and facile use.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号