首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
题目:已知a、b∈R~ 且a b=1,求证(d 1/a)(b 1/b)≥(25)/4.本文给出该不等式的5种证明.证法1:(分析法)欲证原不等式成立,只需证4(a~2 1)(b~2 1)≥25ab4a~2b~2 4a~2 4b~2 4≥25ab4a~2b~2 4(a b)~2-8ab 4≥25ab4a~2b~2-33ab 8≥0(ab-8)(4ab-1)≥0  相似文献   

2.
高中《代数》(必修)下册P18有如下一道例题: 如果a,b∈R+,且a≠b,求证:a3+b3>a2b+ab2. 此不等式结构对称和谐,其内涵十分丰富,应用它的推广能简捷巧妙地解决许多数学问题. 一、推广 命题 1 当 a,b∈R+,则a3+b3≥a2b+ab2 等号成立当且仅当a=b. 命题2 若a,b∈R+,m,n∈Z且mn>0,则am+n+bm+n≥ambn+anbm 当且仅当a=b时取“=”号. 由(am+n+bm+n)-(ambn+anbm)=(am-bm)(an-bn)不难得到命题2的证明. 二、应用  相似文献   

3.
1逆向思维的教材原型题与近年高考题 例1 (新课标选修4-5第25页习题 2.2第2题)已知a,b,c,∈R+,用综合法证: (ab+a+b+1)(ab+ac+bc+c2)≥16abc. 证明 (ab十a+b+1)(ab+ac+bc+c2)=(a+1) (b+1)(a+c) (b+c)≥2√a×2b×2√ac×2√bc=16abc. 例2 (2010年重庆文科第10题)若a,b,c>0,且a2+2ab+2ac+4bc=12,则ab+c的最小值是().  相似文献   

4.
基本不等式a2+b2≥2ab在不等式的证明中起重要作用,但有些不等式直接用它去证明比较困难,而应用该不等式的变形去证明却比较方便. 变形1a2+b2≥2ab a2+b2≥1/2(a+b)2. 例 1 已知 a,b,c∈R+,且a+b+c=5,a2+b2+c2=9,试证明:1≤a、b、c≤7/3. 证明:由已知 a+b=5-c,a2+b2≥9-c2,∵a2+b2≥1/2(a+b)2,∴9-c2≥1/2(5-c)2,∴3c2-10c+7≤0,∴1≤c≤7/3,同理1≤a≤7/3,1≤b≤7/3. 例2 设a,b∈R+,且a+b=1,求证:(a+1/2)2+(b+1/b)2≥25/2.  相似文献   

5.
先看下面的一个公式:设ai∈R,bi∈R+,i=1,2,…,n.则a21b1+a22b2+…+a2nbn≥(a1+a2+…+an)2b1+b2+…+bn.这个公式是由柯西不等式稍加变形后得到的,用它处理一类分式不等式问题十分方便.下面举例说明.例1已知a、b、c∈R+.求证:ab+c+bc+a+ca+b≥32.(第26届莫斯科数学奥林匹克)证明:ab+c+bc+a+ca+b=a2a(b+c)+b2b(c+a)+c2c(a+b)≥(a+b+c)22(ab+bc+ca)≥3(ab+bc+ca)2(ab+bc+ca)=32.例2设a、b、c∈R+,且abc=1.则1a3(b+c)+1b3(c+a)+1c3(a+b)≥32.(第26届IMO)证明:1a3(b+c)+1b3(c+a)+1c3(a+b)=a2b2c2a3(b+c)+a2b2c2b3(c+a)+a2b2c2c3(a+b)=b2c2a(b+…  相似文献   

6.
【例】已知a、b∈(0 ∞),且a b=1,求证:(1)a2 b2≥21,(2)a12 b12≥8;(3)1a 1b a1b≥8(4)(a 1a)2 (b 1b)2≥225(5)(a 1a)(b 1b)≥245.分析:以上五个不等式的左边都含有(或隐含有)a·b或a1·b,因此只要利用a b=1得出ab及a1b的范围,就能够证出以上五个不等式·证明:由a b2≥aba b=  相似文献   

7.
第42届IMO第2题简证   总被引:4,自引:0,他引:4  
第 42届 IMO第 2题是 :对所有正实数 a,b,c,证明 :aa2 +8bc+bb2 +8ca+cc2 +8ab≥ 1.(1)这是一个形式优美的不等式 ,文 [1]介绍了一种基于反证法的证明 .笔者经过思考 ,给出了一种很简洁的直接证法 .证明  (a43 +b43 +c43 ) 2 - (a43 ) 2=(b43 +c43 ) (a43 +a43 +b43 +c43 )≥ 2 b23 c23 · 4a23 b13 c13=8a23 bc,∴ (a43 +b43 +c43 ) 2 ≥ (a43 ) 2 +8a23 bc=a23 (a2 +8bc) ,∴ aa2 +8bc≥ a43a43 +b43 +c43.同理可证 :bb2 +8ac≥ b43a43 +b43 +c43,cc2 +8ab≥ c43a43 +b43 +c43,以上三式相加 ,即证得 (1)式成立 .第42届IMO第2题简证@姜…  相似文献   

8.
2013年浙江省高中数学竞赛的附加题是一道不等式证明题.题目设a、b、c∈R+,ab+bc+ca≥3.证明:a5+b5+c5+a3(b2+c2)+b3(c2+a2)+c3(a2+b2)≥9这道不等式题,证明的人口宽,方法多.下面先给出命题组提供的参考答案.证明原命题等价于证明  相似文献   

9.
<正>本文先给出基本不等式的一个等价变形,再举例说明它的广泛应用.结论已知a、b、λ∈R,且b(a+b)> 0,则有ab≥-λ2+(λ+1)2+(λ+1)2a/(a+b),(*)当且仅当a=λb时取等号.证明由不等式a2a/(a+b),(*)当且仅当a=λb时取等号.证明由不等式a2+λ2+λ2b2b2≥2λab,得a2≥2λab,得a2≥2λab-λ2≥2λab-λ2b2b2.两边同时加上ab并整理,得a(a+b)≥b[(2λ+1) a-λ2.两边同时加上ab并整理,得a(a+b)≥b[(2λ+1) a-λ2b].再两边同时  相似文献   

10.
不等式a b≥2ab(a、b∈R )(当且仅当a=b时等号成立)a b2≥ab(a、b∈R )(当且仅当a=b是等号成立),其中a b2、ab分别是a与b的算术平均数、几何平均数,故简称其为“均值”不等式或“均值”定理.另外均值不等式可推广为三个(或多个)变元的形式,即:a b c≥33abc(a、b、c∈R )(当且仅当a=b=c时等号成立)a1 a2 a3 … an≥na1a2a3…an(a1,a2,a3,…,an∈R )(当且仅当a1=a2=a3=…=an时等号成立)均值不等式的功能除用于比较数的大小及证明不等式外,主要用于求函数的最值,在使用均值不等式求最值时必须具有三个缺一不可条件,即为:一正:诸元皆正;二定:…  相似文献   

11.
第42届国数学奥林匹克试题第2题是:对所有正实数a,b,c,证明(a)/(a2+8bc)+(b)/(b2+8ca)+(c)/(c2+8ab)≥1.文[1]采用文[3][4]的方法给出其推广为:若a,b,c∈R+,λ≥8,则(a)/(a2+λbc)+(b)/(b2+λca)+(c)/(c2+λab)≥(3)/(1+λ)(1).文[2]给出了(1)式的简证,本文进一步把(1)式推广为更一般的形式:  相似文献   

12.
《湖南教育》2007,(4):45-46
85.设正数a,b,c满足a b c=3,求证:ab 1 bc 1 ca 1 1ab b1c c1a≥6.证明:首先证明下面的命题:设t>0,p,q∈R,且p·q>0,则1 tp q≥tp tq,当且仅当t=1时,等号成立.因为1 tp q≥tp tq#1 tp q-tp-tq≥0#1 tp·tq-tp-tq≥0#(tp-1)(tq-1)≥0.因为t>0,p,q∈R,且p·q>0,所以tp-1与tq-1同号,所以(tp-1)(tq-1)≥0,即要证的不等式1 tp q≥tp tq成立.在不等式1 tp q≥tp tq中,令q=p 1,则有1 t2p 1≥tp 1 tp(p>0,或p<-1),两端同除以tp得tp 1 t1p≥t 1.所以ab 1 a1b≥a 1,bc 1 b1c≥b 1,ca 1 c1a≥c 1,这三个同向不等式相加并将a b c=3代入得ab 1 bc 1 ca 1…  相似文献   

13.
问题已知a,b∈R~+,x,y∈R,且a+b=1,求证:ax~2+by~2≥(ax+by)~2.解法1作差比较简单明了ax~2+by~2-(ax+by)~2=ax~2+by~2-a~2x~2-b~2y~2-2abxy=a(1-a)x~2-2abxy+b(1-b)y~2=ab(x~2-2xy+y~2)=ab(x-y)~2≥0.解法2代换在前作差在后因为a+b=1,令T=(a+b)(ax~2+by~2)-(ax+by)~2=abx~2+aby~2-2abxy=ab(x-y)~2≥0.评析"作差法"是证明不等式的一种最基本的方法,巧用作差法是我们解决不等式证明问题的一种行之有效的途径,如果应用得恰当,能切中要害,问题  相似文献   

14.
众所周知,a+b=2A=a,A,b成等差数列,其中A叫做a和b的等差中项.由不等式的基本性质及基本不等式,不难得到如下若干性质:(证明较简单,略.) (1)当a+b=2A时,可设a=A-d,b=A+d; (2)A≥ab~(1/ab);(a,b∈R+,当且仅当a=b时取等号.) (3)1/A2≤1/ab;  相似文献   

15.
对于某些不等式问题,直接求解,困难重重.如果巧妙地引进参数,发挥其桥梁作用,则可峰回路转.本文通过深入挖掘现行高中数学教材所蕴藏的丰富内涵,反复考虑学生的接受能力,特给出三类不等式的有关命题及其应用,希望能给读者一些启迪。定理1a,b∈R+,则有ba2≥22λλa?b(λ为参数,且λ>0),当且仅当aλ=b时等号成立.*证明因为22(λa)+(λb)≥2λa?λb,当且仅当λ=ab时等号成立.两边同除以2λb可得ba2≥22λλa?b.定理证毕.例1设1a,2a,…,na是各不相同的正整数,证明:22322123naaaan+++L≥1+21+31+L+n1.证明在定理1中,令λ=1,则ba2≥2a?b.从而122…  相似文献   

16.
不等式的证明是国内外数学竞赛中的热点问题 ,尽管这些不等式的形式各异 ,但很多不等式的证明却可以用两个基本不等式而巧妙地得到解决 .本文所述的基本不等式为 :a + b≥ 2 ab(a,b∈ R+ )及a1+ a2 +… + ann ≥ n a1a2 … an(ai ∈ R+ ) .下面看一些具体例子 .1 用 a + b≥ 2 ab(a,b∈ R+ )证明竞赛中不等式  例 1 设 x1,x2 ,x3,… ,xn均为正数 ,求证 :x21x2+ x22x3+ x23x4+… + x2n- 1xn+ x2nx1≥ x1+ x2+… + xn.(1 984年全国高中数学联赛题 )证明 :由基本不等式 a + b≥ 2 ab(a,b∈R+ )得x22x1+ x1≥ 2 x2 ,x23x2+ x2 ≥ 2 x3,… …  相似文献   

17.
1963年,一道经典的不等式题在莫斯科数学竞赛中应运而生,原题如下:设 a,b,c∈R+,求证:a/(b+c)+b/(c+a)+c/(a+b)≥3/2.①这个不等式的证法很多,下面笔者给出两个最简单的证明过程.证法1:要证原不等式成立,只须证 a/(b+c)+1+b/(c+a)+1+c/(a+b)+1≥9/2,即只须证[2(a+b+c)](1/(b+d)+1/(c+a)+1/(a+b))≥9,由柯西不等式易知上式显然成立,所以原不等式  相似文献   

18.
不等式a~3+b~3+c~3≥3abc的证法及推广   总被引:1,自引:0,他引:1  
现行教材中三元基本不等式 :“若 a,b,c∈R+ ,则 a3+ b3+ c3≥ 3 abc,当且仅当 a =b =c时 ,等式成立 .”是用因式分解方法证明 ,但分解需要一定技巧 .笔者在教学中了解 ,学生除了欣赏很难掌握 .笔者从学生已有的知识出发 ,通过证明一般的情况 ,导出三元基本不等式的证明 .要证上述“若 a,b,c∈ R+ ,则 a3+ b3+ c3≥ 3 abc,不等式成立 .”学生已有的知识是 :若 a∈ R+ ,a≥ a成立 ,(a∈ R也成立 )若 a,b∈ R+ ,a2 + b2 =2 ab成立 ,当且仅当 a =b时 ,等式成立 .(a,b∈ R也成立 ) ,自然联想 :a,b,c,d∈ R+ ,a4 + b4 + c4 +d4≥ 4abcd是否成…  相似文献   

19.
《中学数学教学》2 0 0 2年第 6期有奖解题擂台( 5 8)中 ,杨先义老师提出如下猜想 :设a >0 ,b >0 ,c>0 ,a +b +c=1 ,则1b+c2 +1c +a2 +1a +b2 ≥2 74①ab +c2 +bc +a2 +ca +b2 ≥ 94②本文指出 ,猜想不等式①不成立 ,不等式②成立。在①式中 ,令a =0 6,b=0 3 6,c =0 0 4,得左边 =3 41 9455 1 5 2 8<2 74=右边 ;故不等式①不成立。下面证明不等式②成立 ,并修正①式。运用Cauchy不等式 ,得[a(b +c2 ) +b(c +a2 ) +c(a +b2 ) ]( ab+c2 +bc+a2 +ca +b2 )≥ (a +b +c) 2 =1 ,所以  ab +c2 +bc+a2 +ca +b2 ≥1ab +bc +ca +a2 b +b2 c+c2 a。…  相似文献   

20.
联想是以观察为基础,对研究的对象或问题,联想已有的知识和经验进行形象思维的方法.通过联想,构造相应的条件,从而解决问题.【例】 设x、y∈R+,且x+y=1,求证:(x+2)2+(y+2)2≥252.联想一:巧用“a2+b2≥2ab”法1:直接法由x+y=1,得(x+2)2+(y+2)2=x2+y2+4x+4y+8=(x+y)2+4(x+y)+8-2xy=13-2xy又∵x、y∈R+,由均值不等式,∴x+y≥2xy,即xy≤14,则-2xy≥-12.故(x+2)2+(y+2)2=13-2xy≥13-12=252.证毕.法2:间接法令a=x+2,b=y+2,则a+b=(x+2)+(y+2)=x+y+4=5(定值)∵a2+b2≥2ab,两边同时加上a2+b2得a2+b2≥(a+b)22即(x+2)2+(y+2)2≥[(x+2)+(y+2)]22=252.…  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号