首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Standard 9 of the National Science Teachers Association Standards for Science Teacher Preparation is designed to ensure that science teacher preparation programs provide preservice science teachers with the knowledge and skills to understand and successfully engage students in a safe and ethical manner. This standard contains four components describing science teachers’ legal and ethical responsibilities, appropriate use of instructional materials (chemicals in particular), emergency procedures and safety equipment, and guidelines for proper use of living organisms in the classroom. In this article, we describe the requirements of Standard 9 and provide guidance on assessments that can be used to present evidence for preservice teachers’ competence in each of the four components.  相似文献   

3.
Grounded in Hallidayan perspectives on academic language, we report on our development of an educative science assessment as one component of the language-rich inquiry science for English-language learners teacher professional learning project for middle school science teachers. The project emphasizes the role of content-area writing to support teachers in diagnosing their students’ emergent understandings of science inquiry practices, science content knowledge, and the academic language of science, with a particular focus on the needs of English-language learners. In our current school policy context, writing for meaningful purposes has received decreased attention as teachers struggle to cover large numbers of discrete content standards. Additionally, high-stakes assessments presented in multiple-choice format have become the definitive measure of student science learning, further de-emphasizing the value of academic writing for developing and expressing understanding. To counter these trends, we examine the implementation of educative assessment materials—writing-rich assessments designed to support teachers’ instructional decision making. We report on the qualities of our educative assessment that supported teachers in diagnosing their students’ emergent understandings, and how teacher–researcher collaborative scoring sessions and interpretation of assessment results led to changes in teachers’ instructional decision making to better support students in expressing their scientific understandings. We conclude with implications of this work for theory, research, and practice.  相似文献   

4.
Several reviews on science education have lamented the lack of content knowledge of primary teachers and implied that improvements in this area would lead to better teaching and learning. Subject knowledge, however is a complex issue. What knowledge is required and how much? There is knowledge of the ‘content’ and the ‘processes’ of science. An elusive but essential third component has been described as syntactic (Grossman, Wilson &; Shulman, 1989), experiential (Burnard, 1986) or personal knowledge. This paper argues that it is unrealistic to consider the implementation of pre-service primary science courses that will provide potential teachers with all the ‘knowledge’ that they will require to be an effective teacher of science. Science educators, can however, provide effective frameworks from which pre-service students can identify and develop their existing knowledge. If teachers of science have their knowledge of science set within a personal view of science the potential exists for their school science programs to be more comprehensive, dynamic, relevant and contemporary. One perspective that could provide this framework is that offered by ‘Science, Technology and Society’ (S-T-S).  相似文献   

5.
Just as the Next Generation Science Standards (NGSSs) call for change in what students learn and how they are taught, teacher education programs must reconsider courses and curriculum in order to prepare teacher candidates to understand and implement new standards. In this study, we examine the development of prospective elementary teachers’ practical knowledge of the NGSS in the context of a science methods course and innovative field experience. We present three themes related to how prospective teachers viewed and utilized the standards: (a) as a useful guide for planning and designing instruction, (b) as a benchmark for student and self-evaluation, and (c) as an achievable vision for teaching and learning. Our findings emphasize the importance of collaborative opportunities for repeated teaching of the same lessons, but question what is achievable in the context of a semester-long experience.  相似文献   

6.
This article reports the validity and use of a new form of the Constructivist Learning Environment Survey (CLES). As part of a larger study, a comparative student version (CLES-CS) was developed to evaluate the impact of an innovative teacher development program (based on the Integrated Science Learning Environment, ISLE, model) in school classrooms. Two separate response blocks for 30 items comprising five scales are presented in side-by-side columns to measure students’ perceptions on a five-point frequency response scale of the extent to which certain psychosocial factors are prevalent in the science class taught by a teacher who had attended the ISLE program (THIS), as well as their perceptions of other science and non-science classes taught by other teachers in the same school (OTHER). The five scales of the CLES are called Personal Relevance, Uncertainty of Science, Shared Control, Critical Voice, and Student Negotiation. Using data collected from 1079 students in 59 classes in north Texas, principal components factor analysis with varimax rotation and Kaiser normalization confirmed the a priori structure of the CLES-CS. The factor structure, internal consistency reliability, discriminant validity, and the ability to distinguish between different classes and groups were supported for the CLES-CS. Students whose science teachers had attended the ISLE program (THIS) perceived higher levels of Personal Relevance and Uncertainty of Science in their classrooms relative to the classrooms of other science and non-science teachers in the same schools (OTHER). Similar results were found when comparing the classroom environment perceptions of students whose science teachers had attended the ISLE program with the perceptions of students whose science teacher had attended alternative field trip programs (non-ISLE).  相似文献   

7.
Science education doctoral programs often fail to address a critical piece—the explicit attention to the preparation of future science teacher educators. In this article, we argue that, in addition to developing skills and a knowledge base for research, doctoral students must be given the opportunity to observe, practice, and reflect on the pedagogical knowledge necessary to instruct science teachers. In particular, we contend that the construct of pedagogical content knowledge (PCK) can be adapted to the context of knowledge for teaching science teachers. We use the PCK construct to propose a model for the development of knowledge for teaching science teachers, grounded in our experiences as doctoral students and faculty mentors. We end by recommending a vision for doctoral preparation and a new standard to be included in the ASTE Professional Knowledge Standards for Science Teacher Educators.  相似文献   

8.
The purpose of this case study is to delve into the complexities of how preservice science teachers’ science teaching orientations, viewed as an interrelated set of beliefs, interact with the other components of pedagogical content knowledge (PCK). Eight preservice science teachers participated in the study. Qualitative data were collected in the form of content representation, responses to an open-ended instrument, and semi-structured interviews. Preservice teachers’ orientation and PCK were analyzed deductively. Constant comparison analysis of how their orientation interacted with other PCK components revealed three major themes: (1) one’s purpose for science teaching determines the PCK component(s) with which it interacts, (2) a teacher’s beliefs about the nature of science do not directly interact with his/her PCK, unless those beliefs relate directly to the purposes of teaching science, and (3) beliefs about science teaching and learning mostly interact with knowledge of instructional strategies. Implications for science teacher education and research are discussed.  相似文献   

9.
10.
Developing pre-service science teachers’ epistemic insight remains a challenge, despite decades of research in related bodies of work such as the nature of science (NOS) in science education. While there may be numerous aspects to this problem, one critical element is that the NOS is a meta-concept that demands higher-order cognitive skills. One possible strategy to facilitate pre-service teachers’ understanding of epistemic aspects of science is visualisation. Visual representations of objects and processes can be tools for developing and monitoring understanding. Although the NOS and visualisation literatures have been studied extensively, the intersection of these bodies of literatures has been minimal. Incorporating visual tools on the NOS in teacher education is likely to facilitate teachers’ learning, eventually impacting their students’ learning of the NOS. The objective of this paper is to illustrate how the visual tools of scientific knowledge and practices aspects of the NOS can be integrated in science teacher education in order to develop pre-service teachers’ epistemic insight. The paper presents an empirical study that incorporated visual tools about the NOS in primary science teacher education. Data on 14 pre-service teachers’ are presented along with in-depth case studies of 3 pre-service teachers illustrating the influence of the teacher education intervention. The qualitative analysis of visual representations before and after the intervention as well as verbal data suggests that there was improvement in pre-service teachers’ perceptions of the NOS. Implications for future research on visualisation of the NOS are discussed.  相似文献   

11.
NGSS and the Next Generation of Science Teachers   总被引:1,自引:0,他引:1  
This article centers on the Next Generation Science Standards (NGSS) and their implications for teacher development, particularly at the undergraduate level. After an introduction to NGSS and the influence of standards in the educational system, the article addresses specific educational shifts—interconnecting science and engineering practices, disciplinary core ideas, crosscutting concepts; recognizing learning progressions; including engineering; addressing the nature of science, coordinating with Common Core State Standards. The article continues with a general discussion of reforming teacher education programs and a concluding discussion of basic competencies and personal qualities of effective science teachers.  相似文献   

12.
The primary purpose of this study was to develop and apply a method for assessing teachers' context beliefs about their science teaching environment. Interviews with 130 purposefully selected teachers resulted in 28 categories of environmental factors and/or people who were perceived to influence science teaching. These categories were used to develop items for the Context Beliefs about Teaching Science instrument and provided evidence for content validity. Construct validity was partially confirmed through factor analysis that resulted in 26 items and two subscales on the final instrument. Using Ford's Motivation Systems Theory and Bandura's Theory of Collective Efficacy, additional evidence for construct validity was found in the modest correlation of context beliefs with outcome expectancy beliefs and the low correlation with science teaching self‐efficacy beliefs. The instrument was tested using 262 teachers participating in long‐term science professional development programs. These teachers possessed fairly positive context beliefs and, according to Ford's theory, should be capable of effective functioning in the classroom. It was concluded that the assessment of context beliefs would complement current science teacher self‐efficacy measures, thereby allowing researchers to develop profiles of science teachers' personal agency belief patterns. It could also be used to determine the factors which predict particular personal agency belief patterns, and assess teachers' perceptions of the strengths and weaknesses of school science programs, and could be used in planning and monitoring professional development experiences for science teachers. © 2000 John Wiley & Sons, Inc. J Res Sci Teach 37: 275–292, 2000.  相似文献   

13.

Science learning is inextricably tied to two aspects of students’ lives: literacy and culture. While English Learners (ELs) who speak a non-English native language are typically the focus in this line of scholarly inquiry, deaf and hard-of-hearing (DHH) students occupy a distinct space in this conversation. For DHH learners, literacy levels can be hindered by an early dependence on a more survival-based language learning model that postpones basic scientific inquiry. The vocabulary for curiosity is limited, which in turn affects the educational culture. DHH learners have a unique culture that demands an appropriate science curriculum, which thus far has not been explored or attempted for either DHH learners or their educators. Data collected consisted of interviews with teachers of DHH students, as well as observational data collected from a high-minority urban K-8 school for DHH students. The analysis revealed that, first, many of the teachers had limited preparation to teach science content. Second, DHH teachers used inconsistent instructional strategies ranging from drawing pictures to building models. Third, the modifications provided to DHH science learners were mostly limited to visual support and repetition. Implications for teacher education programs include instruction focused on specific supports for DHH students and co-teaching methods, and deeper investigation of inquiry-based science practices. Implications for classroom practices include providing hands-on, inquiry-based instruction, working closely with parents, and developing students’ and teachers’ understanding of scientific inquiry.

  相似文献   

14.
Young children are able to benefit from early science teaching but many preschool teachers have not had opportunities to deepen their own understanding of science or to develop their pedagogical content knowledge (PCK) in relation to specific science topics and concepts. This study presents the results of efficacy research on Foundations of Science Literacy (FSL), a comprehensive professional development program designed to support teachers’ knowledge of early childhood science; their PCK around 2 physical science topics (water, and balls and ramps); and their abilities to plan, facilitate, and assess young children’s learning during inquiry-based science explorations. Research Findings: In a randomized trial with 142 preschool teachers and 1,004 4-year-old children, FSL teachers demonstrated significantly higher quality science teaching in general and greater PCK in the 2 physical science topics than did teachers in comparison classrooms. Furthermore, children in FSL classrooms performed significantly better than children in comparison classrooms on tasks involving floating and sinking, and an instrumental variable analysis suggests that the quality of classroom science instruction mediated the relationship between teacher participation in FSL and student outcomes. Practice or Policy: Findings support the use of comprehensive early science professional development programs designed to bolster teacher knowledge and PCK.  相似文献   

15.
Our focus is on the effects that dated ideas about the nature of science (NOS) have on curriculum, instruction and assessments. First we examine historical developments in teaching about NOS, beginning with the seminal ideas of James Conant. Next we provide an overview of recent developments in philosophy and cognitive sciences that have shifted NOS characterizations away from general heuristic principles toward cognitive and social elements. Next, we analyze two alternative views regarding ‘explicitly teaching’ NOS in pre-college programs. Version 1 is grounded in teachers presenting ‘Consensus-based Heuristic Principles’ in science lessons and activities. Version 2 is grounded in learners experience of ‘Building and Refining Model-Based Scientific Practices’ in critique and communication enactments that occur in longer immersion units and learning progressions. We argue that Version 2 is to be preferred over Version 1 because it develops the critical epistemic cognitive and social practices that scientists and science learners use when (1) developing and evaluating scientific evidence, explanations and knowledge and (2) critiquing and communicating scientific ideas and information; thereby promoting science literacy.  相似文献   

16.
The 2003 National Science Teachers Association Standards for Science Teacher Preparation (NSTA-SSTP) were developed to provide guidelines and expectations for science teacher preparation programs. This article is the fourth in a special JSTE series on accreditation written to assist science teacher educators in meeting the NSTA-SSTP. In this article, the authors discuss pedagogical content knowledge and how this is expressed in the NSTA-SSTP. Included are competencies and examples needed for a science teacher preparation program to document developing pedagogical content knowledge in preservice science teachers.  相似文献   

17.
Formative assessment provides a means to successfully scaffold learning. Unfortunately, few teachers understand the pedagogical implications of such scaffolding or their role in utilizing formative assessments. The purpose of our study was to develop an understanding of the experience of being a teacher that is seeking to improve learning through formative assessment and using that understanding to improve our practices in teacher education. Three categories emerged from the data analysis: (1) questioning the validity of tacit pedagogical understandings, (2) understanding the experiences of the students, and (3) exploring the need to develop a more reflexive classroom. The findings from this study are useful for persons seeking to prepare teachers to guide science learning.  相似文献   

18.
This article reports on the collaboration of six states to study how simulation‐based science assessments can become transformative components of multi‐level, balanced state science assessment systems. The project studied the psychometric quality, feasibility, and utility of simulation‐based science assessments designed to serve formative purposes during a unit and to provide summative evidence of end‐of‐unit proficiencies. The frameworks of evidence‐centered assessment design and model‐based learning shaped the specifications for the assessments. The simulations provided the three most common forms of accommodations in state testing programs: audio recording of text, screen magnification, and support for extended time. The SimScientists program at WestEd developed simulation‐based, curriculum‐embedded, and unit benchmark assessments for two middle school topics, Ecosystems and Force & Motion. These were field‐tested in three states. Data included student characteristics, responses to the assessments, cognitive labs, classroom observations, and teacher surveys and interviews. UCLA CRESST conducted an evaluation of the implementation. Feasibility and utility were examined in classroom observations, teacher surveys and interviews, and by the six‐state Design Panel. Technical quality data included AAAS reviews of the items' alignment with standards and quality of the science, cognitive labs, and assessment data. Student data were analyzed using multidimensional Item Response Theory (IRT) methods. IRT analyses demonstrated the high psychometric quality (reliability and validity) of the assessments and their discrimination between content knowledge and inquiry practices. Students performed better on the interactive, simulation‐based assessments than on the static, conventional items in the posttest. Importantly, gaps between performance of the general population and English language learners and students with disabilities were considerably smaller on the simulation‐based assessments than on the posttests. The Design Panel participated in development of two models for integrating science simulations into a balanced state science assessment system. © 2012 Wiley Periodicals, Inc. J Res Sci Teach 49: 363–393, 2012  相似文献   

19.
To improve student science achievement in the United States we need inquiry-based instruction that promotes coherent understanding and assessments that are aligned with the instruction. Instead, current textbooks often offer fragmented ideas and most assessments only tap recall of details. In this study we implemented 10 inquiry-based science units that promote knowledge integration and developed assessments that measure student knowledge integration abilities. To measure student learning outcomes, we designed a science assessment consisting of both proximal items that are related to the units and distal items that are published from standardized tests (e.g., Trends in International Mathematics and Science Study). We compared the psychometric properties and instructional sensitivity of the proximal and distal items. To unveil the context of learning, we examined how student, class, and teacher characteristics affect student inquiry science learning. Several teacher-level characteristics including professional development showed a positive impact on science performance.  相似文献   

20.
The intent of national efforts to frame science education standards is to promote students’ development of scientific practices and conceptual understanding for their future role as scientifically literate citizens (NRC 2012). A guiding principle of science education reform is that all students receive equitable opportunities to engage in rigorous science learning. Yet, implementation of science education reform depends on teachers’ instructional decisions. In urban schools serving students primarily from poor, diverse communities, teachers typically face obstacles in providing reform-based science due to limited resources and accountability pressures, as well as a culture of teacher-directed pedagogy, and deficit views of students. The purpose of this qualitative research was to study two white, fourth grade teachers from high-poverty urban schools, who were identified as transforming their science teaching and to investigate how their beliefs, knowledge bases, and resources shaped their planning for reform-based science. Using the Shavelson and Stern’s decision model for teacher planning to analyze evidence gathered from interviews, documents, planning meetings, and lesson observations, the findings indicated their planning for scientific practices was influenced by the type and extent of professional development each received, each teacher’s beliefs about their students and their background, and the mission and learning environment each teacher envisioned for the reform to serve their students. The results provided specific insights into factors that impacted their planning in high-poverty urban schools and indicated considerations for those in similar contexts to promote teachers’ planning for equitable science learning opportunities by all students.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号