首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
问题:已知双曲线渐近线及所过的点,确定双曲线方程. 例 1 已知双曲线的渐近线y=±3x,又过点A(6,8),求双曲线方程. 分析:此题若按照常规方法解需分情况讨论,显然较为繁琐,也是学生最不愿意做的.也可按照所过点与渐近线的相对位置,来确定焦点位置.解法如下:  相似文献   

2.
教师加强教学研究是提高教学水平必由之路,而对习题的钻研探讨则是教学研究的一个重要方面。本人在对习题钻研探讨中受益非浅。 一、问题的提出 普高课本《平面解析几何》的P90第七题:求与双曲线x~2/9-y~2/16=1有共同的渐近线且过点A(-3,2 3~(1/2))的双曲线方程 该题的一般解法: (1)求出已知双曲线的渐近线方程; (2)根据已知点A坐标及渐近线方程,判别双曲线的焦点在何轴上,再假设出所求的双曲线方程,(或分焦点在x轴上或在y轴上两种情况讨论,但其中的一种情况无解); (3)根据条件,求出方程中的待定常数。 二、问题的解决 其解法繁在第二步,为了简化这一问题,先讨论下面的问题:由于双曲线x~2/9-y~2/16=1与x~2/32-y~2/18=1(即x~2/9-y~2/16=-2)的渐近线方程都为y=±4/3 x,由此可见不同的双曲线可能有相同的渐近线。反之,以已知直线为渐近线的双曲线有无数条。  相似文献   

3.
给出双曲线的渐近线求其方程,是由已知条件求双曲线方程的一种常见题型.例如:已知等轴双曲线的两条渐近线是x-y+1=0和x+y-4=0,并且经过点(1,1),试求它的方程.对于这一类习题,由于现行统编教材没有专题介绍,所以绝大多数同学对此束手无策.本文给出这类习题的简捷解法,供大家在学习时参考. 我们知道直线l_1:bx-ay=0①和  相似文献   

4.
上海市高中二年级数学第一学期(试验本)课本第115页有这样一道例题:已知双曲线过点P(4,3),它的一条渐近线的方程为y=1/2x,求双曲线的标准方程.传统的解法:∵双曲线的一条渐近线方程为y=1/2x,∴当x=4时,渐近线上对应点的纵坐标为1/2×4=2,小于点P的纵坐标3(如图1),所以双曲线的焦点在y轴上.于是,设双曲线的方  相似文献   

5.
我们知道.方程为。_,,‘~_、,.b渐班线万程刀,=土万劣盯.双曲线 戈名0晓. g,_.,.一艺亏〔玉~~1. U口邢~若令护=儡一流一’或则上述两方程可统一为:一畏冬二:即 妇尸J“(下转20页)、.求与双曲线一答一丫言一,有共、渐近线(狱)且经过点p(一3,2斌万)的双曲线方程. (浓)式表示渐近线为,一土·会二的所有双曲线的方程.在已知渐近线求双曲线方程之时.运用(拭)式只要求出。.其焦点是在x轴上还是在g轴上将由所求得。值的符号自然决定。这比先判断焦点在哪个坐标轴上要简便一些.举例于下: 例,已知双曲线经过点M(理一,一,),其渐近‘_、_、,.2、.、_…  相似文献   

6.
例(2006年山东卷21题)已知双曲线C与椭圆x^2/8+y^2/4=1有相向的焦点,直线y=√3x为C的一条渐近线.(1)求双曲线C的方程;(2)过点P(0,4)的直线Z,交双曲线C于A,B两点,交x轴于Q点(Q点与C的顶点不重合),  相似文献   

7.
各已知渐近线方程 f_1(x)=0,f_2(x)=0而不知双曲线方程类型情况下,求双曲线方程可通过设方程为f_1(x)·f_2(x)=λ(λ≠0)来确定.例1 求以4x-3y=0,4x 3y=0为渐近线方程且过 P(4 (3~(1/2),8)的双曲线方程.解:渐近线方程可变为(4x-3y)(4x 3y)=16x~2-9y~2=0  相似文献   

8.
例1 与双曲线x2/2-y2=1有相同渐近线且经过点A(2,-3)的双曲线方程为( ). A.y2/9-x2/2=1 B.x2/x-y2/9=1 C.y2/7-X2/14=1 D.x2/14-y2/7=1 解:设所求双曲线方程为等x2/x-y2=λ(λ≠0).由于该双曲线过点(2,-3),则4/2-9=λ,即λ=-7,故所求双曲线方程为y2-x2/14=1.应选C.  相似文献   

9.
一、直接由题设得不等关系 ,求得结果若问题中给出了某相关参数的取值范围 ,而所求参数依赖于已知参数 ,则可先建立起它们之间的关系 ,再利用已知参数的范围求得未知参数的范围 ,从而达到解决问题的目的 .例 1 已知双曲线C :x2 + 1-t2t2 y2 =1(t>1)的右支分别与x轴及直线x + y =0相交于A、B两点 .以A为焦点 ,对称轴是x轴且开口向左的抛物线经过点B ,设抛物线的顶点为M .求当双曲线的一条渐近线的斜率在 415 ,+∞ 上变化时 ,直线BM的斜率的变化范围 .解 :由y=-x ,x2 + 1-t2t2 y2 =1,得B(t,-t) .设M (m ,0 ) ,由…  相似文献   

10.
一、忽视特殊情况【例1】过点(0,1)作直线,使它与抛物线y2=4x仅有一个公共点,这样的直线有A.1条B.2条C.3条D.0条错解:设直线的方程为y=kx 1,联立y2=4x,y=kx 得(kx 1)2=4x,即:k2x2 (2k-4)x 1=0,再由Δ=0,得k=1,得答案A.剖析:本题的解法有两个问题:一是将斜率不存在的情况漏掉了,二是将斜率k=0的情形丢掉了.故本题应有三解,即直线有三条.小结:直线与抛物线只有一解时,并不一定相切,因为直线与抛物线的对称轴平行时,也只有一解.二、忽视焦点位置【例2】设双曲线的渐近线为:y=±32x,求其离心率.错解:由双曲线的渐近线为:y=±23x,可得:ba=23,从…  相似文献   

11.
高二上册中有如下一道求双曲线标准方程:已知:渐近线方程是y=±2/3X,经过点M(9/2,-1),求双曲线的标准方程。因为本题没有给出焦点所在坐标轴,所以在作业中学生们大都采用讨论的方法解答此题。  相似文献   

12.
双曲线在历年高考中都有着重要的地位.而双曲线的离心率和渐近线作为反映双曲线图形特点的基本几何性质,它们之间的关系更应成为我们关注的焦点.已知双曲线方程x2/a2-y2/b2=λ(a >0,b>0,λ≠0)求渐近线方程,只需将方程右端的“λ”换成0,整理  相似文献   

13.
1题5法8解     
求二次函数解析式是初中代数的重要内容之一,也是中考命题的热点.本文通过一例的八种解法说明解这类题的五种一般的思路方法与技巧.题已知抛物线y=。’+ta+c(a/0)的顶点为(-2,9),且与X轴两交点间的距离为6,求抛物线的解析式.方法—一般法,即按照题意布列关于a。b、C的方程组,再解之.解1由已知,得解之,得a二一l,b=-4,c=5·故所求解析式为y=-x‘-4x+5·解2依题意得点评这里把顶点(-2,9)作为普通的点使用,所得方程③比方程②简单,为方程组的求解创造了有利条件.解3令西一b’-4ac,则仿解1得解得a=-l…  相似文献   

14.
高中解析几何课本有这样一类题目:已知双曲线的渐近线方程,再附有其他已知条件,求此双曲线方程.若能运用共渐近线的双曲线系来解此类问题,常能带来方便,本文试图探讨这一问题. 双曲线x~2/a~2-y~2/b~2=1和它的共轭双曲线x~2/a~2-y~2/b~2=1有共同的渐近线x/a±y/b=0. 双曲线系x~2/a~2-y~2/b~2=λ(λ≠0)的渐近线方程也是x/a±y/b=0.  相似文献   

15.
本讲主要涉及向量与圆锥曲线之间的关系的一类竞赛问题. 例1 已知椭圆T:(x2)/(a2)+(y2)/(b2)=1(a>b>0)和双曲线S:(x2)/(m2)+(y2)/(n2)=1(m>0, n>0)具有相同的焦点F(2,0).设双曲线S经过第一象限的渐近线为l.若焦点F和椭圆T上方的顶点B关于l的对称点都在双曲线S上,求椭圆T和双曲线S的方程.  相似文献   

16.
题目 已知以原点O为中心,F(√5,0)为右焦点的双曲线C的离心率e=√5/2. (Ⅰ)求双曲线C的标准方程及其渐近线方程; (Ⅱ)如图,已知过点M(x1,y1)的直线l1:x1x+4y1y=4与过点N(x2,y2)(其中x1≠x2)的直线l2:x2x+4y2y=4的交点E在双曲线C上,直线MN与两条渐近线分别交于G,H,求△OGH的面积.  相似文献   

17.
<正>1.试题呈现及分析例1 (2022年新高考Ⅱ卷第21题)设双曲线C:■的右焦点为F (2, 0),渐近线方程为■.(1)求C的方程;(2)过F的直线与C的两条渐近线分别交于A, B两点,点P (x1, y1), Q (x2, y2)在C上,且x1> x2> 0, y1> 0.  相似文献   

18.
<正> 例已知点P是离心率为P的双曲线上任一点,设点P到该双曲线中心O的距离是d,到两焦点F1、F2的距离分别是d1、d2.求d1+d2/d的取值范围. 分析此题的常规解法是设该双曲线方程为x2/a2-y2/b2=1,点P  相似文献   

19.
20 0 0年高考理科数学第 (2 2 )题 :图 1如图 1,已知梯形 ABCD中| AB| =2 | CD| ,点E分有向线段 AC所成的比为λ,双曲线过 C,D,E三点 ,且以 A,B为焦点 .当 23≤λ≤ 34时 ,求双曲线离心率 e的取值范围 .题目言简意赅 ,求的是离心率的取值范围 ,而建立坐标系求双曲线方程考生都敢下笔 ,但要综合运用数学知识解对也有一定难度 .此题有多种解法 ,下面提供不同于标准答案的几种解法 .解法 1 以 A为极点 ,射线 AB为极轴建立极坐标系 ,则双曲线的极坐标方程为 ρ= ep1 ecosθ(其中 p =c- a2c为焦准距 ) ,记p E = ep1 ecosθ>0 ,则 p C…  相似文献   

20.
在求圆锥曲线轨迹方程时用定义解题既方便又快捷 ,但有时审题不清 ,思考不严密 ,造成解题错误 .现举例说明以便引起重视 .例 1 动点 P到直线 x =5的距离与它到点 F ( 1,0 )的距离之比为 3 ,求动点的轨迹方程 .错解 :由定义知 ,点 P的轨迹是椭圆 ,所以 e=33 ,c=1,a2c=5 ,所以 a2 =5 .所以 b2 =a2 -c2 =4.故所求方程为 x25 +y24=1.正解 :设 P( x,y) ,由题意得|5 -x|( x -1) 2 +y2 =3化简得 ( x +1) 212 +y28=1.例 2 已知双曲线的右准线 x =4,右焦点F ( 10 ,0 ) ,离心率 e =2 ,求双曲线方程 .错解 1:因为右准线方程为 x =4,所以 a2c=4,又 c…  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号