首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Pigeons were trained to recall an arbitrary sequence on a delayed matching-to-successive-samples (DMTSS) task. Sample items were presented successively and then displayed simultaneously. Subjects were required to respond to them in the order in which they appeared. In Experiment 1, pigeons responded correctly on 75% of the trials on a two-item DMTSS task but at a chance level of accuracy on a three-item task. In Experiment 2, pigeons who learned to produce a three-item sequence prior to DMTSS training mastered a three-item DMTSS task at a 75% level of accuracy. Control groups, trained initially with the same items on nonserial tasks, performed as poorly on a three-item DMTSS task as the naive subjects of Experiment 1. It was hypothesized that pigeons that first learned to produce a three-item list were able to recall three-item samples in DMTSS because they had learned to represent three-item sequences.  相似文献   

2.
In Experiments 1 and 2, pigeons’ spatial working memory in an open-field setting was examined under conditions that differed in terms of working-memory load (number of sites visited prior to a retention test) at various delays between initial choices and the retention test. In Experiment 1, pigeons were tested under two conditions of memory load (three or five sites visited prior to the delay) and two delay intervals (15 and 60 min). Accuracy declined as a function of delay but was not affected significantly by memory load. In Experiment 2A, pigeons were tested under three conditions of memory load (two, four, or six sites visited prior to the delay). In separate phases, the delay was 2, 15, and 60 min. Accuracy was not affected by memory load in any of these phases. In Experiment 2B, three conditions of memory load (two, four, or six sites visited prior to the delay) were tested at two delays (2 and 60 min) within a test phase. Accuracy declined with increasing delay, but memory load again had no significant effects. These results are inconsistent with previous suggestions that pigeons’ retention of spatial information may decline as working-memory load is increased. In Experiment 3, cue-manipulation tests confirmed that pigeons’ choice behavior in the open-field task is controlled by memory for previously visitad room locations.  相似文献   

3.
The effects of within-session variations in the intertriai interval (ITI) and delay on pigeons’ memory for event duration were studied in delayed symbolic matching-to-sample tasks. Pigeons were trained to peck one color following a long (8 sec) sample and another color following a short (2 sec) sample. In the first three experiments, the baseline conditions included a 10-sec delay (retention interval) and a 45-sec ITI. During testing, the delay was varied from 0 to 20 sec, and the ITI that preceded the trial was varied from 5 to 90 sec. When the ITI and delay were manipulated separately (Experiments 1 and 2), the pigeons displayed a choose-short tendency when the delay was longer than 10 sec or when the ITI was longer than 45 sec, and a choose-long tendency when either the delay or the ITI was shorter than these baseline values. These effects occurred whether the sample was food access or light. When the ITI and delay were manipulated together, the pigeons showed a large choose-long error tendency when the short delay was tested together with a short ITI, and no systematic error tendency when the short delay was tested together with a longer ITI. A very large choose-short error tendency emerged on trials with a long delay and a long ITI; a reduced choose-short tendency was present when the long delay was presented together with a short ITI. In Experiment 4, the baseline conditions were a 0-sec delay and a 45-sec ITI. In this case variations in the ITI had a smaller and unidirectional effect: the pigeons showed a choose-long error tendency when the ITI was decreased, but no effect of ITI increases. Two hypotheses were proposed and discussed: (1) that pigeons judge sample durations relative to a background time composed of the ITI and delay, and (2) that the delay and ITI effects might arise from a combination of subjective shortening and proactive effects of samples from previous trials.  相似文献   

4.
Four experiments are reported in which pigeons first learned one wavelength discrimination (green S+, yellow S?) and then the reversal; finally, after various delays, they were tested for wavelength generalization in extinction. In Experiment 1, the two problems were learned in different contexts; testing in Context 1 produced maximal responding to green in only half of the subjects, even when testing was delayed 30 days. In Experiment 2, testing of the subjects repeatedly in both contexts showed good control by each context after a 30-day delay. In Experiment 3, both problems were learned in the same context, and all gradients showed recency, peaking at yellow, even after 30 days. In Experiment 4, the subjects learned a series of reversals in the same context, terminating in yellow, S+, green, S?, and their gradients peaked at yellow, even after a 30-day delay. In Experiments 3 and 4, the gradients became flatter with increasing delays, and they were flatter in Experiment 4 (after three reversals) than in Experiment 3 (after one reversal). The location of the peak was not affected by delay, but only by testing in a context that had been uniquely associated with Problem 1 (Experiments 1 and 2). It is proposed that the location of gradient peaks indicates what is being remembered, whereas the slope of the obtained gradients indicates how well the target memory has been retrieved.  相似文献   

5.
In the delayed matching of key location procedure, pigeons must remember the location of the sample key in order to choose correctly between two comparison keys. The deleterious effect of short intertrial intervals on key location matching found in previous studies suggested that pigeons’ short-term spatial memory is affected by proactive interference. However, because a reward expectancy mechanism may account for the intertriai interval effect, additional research aimed at demonstrating proactive interference was warranted. In Experiment 1, matching accuracy did not decline from early to late trials within a session, a finding inconsistent with a proactive interference effect. In Experiment 2, evidence suggestive of proactive interference was found: Matching was more accurate when the locations that served as distractors and as samples were chosen from different sets. However, this effect could have been due to differences in task difficulty, and the results of the two subsequent experiments provided no evidence of proactive interference. In Experiment 3, the distractor on Trialn was either the location that had served as the sample on Trialn ? 1 or one that had been a sample on earlier trials. Matching accuracy was not inferior on the former type of trial. In Experiment 4, the stimuli that served as samples and distractors were taken from sets containing 2, 3, 5, or 9 locations. Matching accuracy was no worse, actually slightly better, with smaller memory set sizes. Overall, these findings suggested that pigeons’ memory for spatial location may be immune to proactive interference. However, when, in Experiment 5, an intratrial manipulation was used, clear evidence of proactive interference was found: Matching accuracy was considerably lower when the sample was preceded by the distractor for that trial than when it was preceded by the sample or by nothing. Possible reasons why interference was produced by intratrial but not intertrial manipulations are discussed, as are implications of these data for models of pigeons’ short-term spatial memory.  相似文献   

6.
Past evidence that pigeons may adopt a single-code/default strategy to solve duration sample discriminations may be attributable to the similarity between the intertrial interval (ITI) and the retention interval. The present experiments tested whether pigeons would adopt a single-code/default strategy when possible ITI-retention-interval ambiguity was eliminated and sample salience was increased. Previous studies of duration sample discriminations that have purported to show evidence for the use of a single-code/default coding strategy have used durations of 0, 2, and 10 sec (Zentall, Klein, & Singer, 2004). However, the results of Experiment 1 suggest that the use of a 0-sec sample may produce an artifact resulting in inadvertent present/absent sample matching. In Experiment 2, when pigeons were trained with three nonzero duration samples (2, 8, and 32 sec), clear evidence for the use of a single-code/default strategy was found.  相似文献   

7.
Three experiments examined changes in size of multiple-schedule behavioral contrast with changes in an independent variable. Experiment 1 found that positive contrast generally increased with increases in component duration when pigeons pressed treadles. Experiments 2 and 3 found that positive and negative contrast generally increased with increases in the baseline rates of reinforcement when pigeons pecked keys. The experiments show that positive and negative contrast vary as similar functions of the same variables. Experiment 1 also suggests that these functions are different for different responses.  相似文献   

8.
A comparison of the effects of scopolamine hydrobromide on working memory and reference memory in White Carneaux pigeons was undertaken by means of a modified delayed matching-to-sample procedure. Performance on working-memory trials was disrupted by decreases in sample duration and intertriai interval and by increases in delay interval. Performance on reference memory trials was not disrupted by any of these parametric manipulations. In Experiment 1, the pigeons received injections of scopolamine hydrobromide (0.01, 0.05, or 0.1 mg/kg), scopolamine methyl bromide (0.1 mg/kg), or saline prior to test sessions. In Experiment 2, the pigeons received injections of scopolamine hydrobromide (0.01 or 0.03 mg/kg), scopolamine methyl bromide (0.03 mg/kg), or saline. In both experiments, scopolamine hydrobromide had greater disruptive effects on working-memory trials than on reference-memory trials. The centrally active form of scopolamine disrupted working-memory trial accuracy more than the peripherally active form. However, no drug dose × delay interval interaction was obtained. Thus, the interference on working-memory-trial accuracy produced by central cholinergic blockade would not appear to be due to alterations in the active maintenance of information during the delay interval.  相似文献   

9.
Pigeons were trained on duration matching-to-sample in which each of four combinations of signal type (red or white light) and duration (2 or 10 see) was mapped onto a different choice stimulus. Probe trials in Experiments 1 and 2 involved a successive presentation of two duration samples. In each experiment, birds tended to summate two durations when the same signal was presented twice, but not when two different signals appeared. These results contrast with those reported by Spetch and Sinha (1989), who found a summation effect with both same-signal and different-signal compounds. In Experiment 3, pigeons chose among two alternatives which were both associated with the duration of the sample but of which only one was also associated with the signal type of the sample. Pigeons systematically chose the stimulus that matched both sample duration and signal type. The implications of these findings are discussed in terms of transfer of training and coding of event duration.  相似文献   

10.
Control of pigeons’ keypecking by a stimulus-reinforcer contingency was investigated in the context of a four-component multiple schedule. In each of three experiments, pigeons were exposed to a schedule consisting of two two-component sequences. Discriminative stimuli identifying each sequence were present only in Component 1, which was 4, 6, or 8 sec in duration, while reinforcers could be earned only in Component 2 (30 sec in duration). Control by a stimulus-reinforcer contingency was sought during Component 1 by arranging a differential relation between Component 1 cues and schedule of reinforcement in Component 2. In Experiment 1, rate of keypecking during Component 1 varied with the presence and absence of a stimulus-reinforcer contingency. When a contingency was introduced, rate of keypecking increased during the Component 1 cue associated with the availability of reinforcement in Component 2. In Experiment 2, the stimulus-reinforcer contingency was manipulated parametrically by varying the correlation between Component 1 cues and Component 2 schedules of reinforcement. Responding in Component 1 varied as a function of strength of the stimulus-reinforcer contingency. The relatively high rates of Component 1 responding observed in Experiments 1 and 2 pose difficulties for conceptions of stimulus-reinforcer control based on probability of reinforcement. In these two experiments, the stimulus-associated probabilities of reinforcement in Component 1 were invariant at zero. An alternate dimension of stimulus-reinforcer control was explored in Experiment 3, in which Component 1 cues were differentially associated with delay to reinforcement in Component 2, while probability of reinforcement was held constant across components. When the stimulus-reinforcer contingency was in force, rate of responding in Component 1 varied inversely with delay to reinforcement in Component 2. In a quantitative analysis of data from Experiments 2 and 3, relative rate of responding during Component 1 was strongly correlated with two measures of relative delay to reinforcement.  相似文献   

11.
Two experiments examined the performance of pigeons on symbolic-matching-to sample in which the relevant sample dimension consisted of duration. Each pigeon was trained on two problems that had the same two sample durations, 2 and 10 sec, but were different with respect to other physical properties of the samples. Durations of light and tone were used in Experiment 1; durations of two different color-location compounds were used in Experiment 2. In each experiment, a unique choice stimulus was associated with each of the four possible combinations of duration and signal type. Test sessions contained probe trials in which the choice stimuli were these appropriate for a long and a short duration of the signal type opposite to that actually presented. Pigeons in both experiments displayed asymmetrical performance deficits. Accuracy on long durations dropped to chance or below, whereas accuracy on short durations remained high. This pattern is similar to the choose-short effect that is obtained when animals are tested with long retention intervals. The implications of these results for duration memory, coding, and transfer of training are discussed.  相似文献   

12.
We present an algebraic model of resistance to extinction that is consistent with research on resistance to change. The model assumes that response strength is a power function of reinforcer rate and that extinction involves two additive, decremental processes: (1) the termination of the reinforcement contingency and (2) generalization decrement resulting from reinforcer omission. The model was supported by three experiments. In Experiment 1, 4 pigeons were trained on two-component multiple variable-interval (VI) 60-sec, VI 240-sec schedules. In two conditions, resistance to change was tested by terminating the response-reinforcer contingency and presenting response-independent reinforcers at the same rate as in training. In two further conditions, resistance to change was tested by prefeeding and by extinction. In Experiment 2, 6 pigeons were trained on two-component multiple VI 150-sec schedules with 8-sec or 2-sec reinforcers, and resistance to change was tested by terminating the response-reinforcer contingency in three conditions. In two of those conditions, brief delays were interposed between responses and response-independent reinforcers. In both Experiments 1 and 2, response rate was more resistant to change in the richer component, except for extinction in Experiment 1. In Experiment 3, 8 pigeons were trained on multiple VI 30-sec, VI 120-sec schedules. During extinction, half of the presentations of each component were accompanied by a novel stimulus to produce generalization decrement. The extinction data of Experiments 1 and 3 were well described by our model. The value of the exponent relating response strength and reinforcement was similar in all three experiments.  相似文献   

13.
Willson and Wilkie (1993) developed a novel procedure for assessing pigeons’ memory for the spatial location of food. Only one of four locations (consisting of an illuminated pecking key and grain feeder) provided food each day. Over days, different locations provided food. The pigeons’ tendency to revisit the location that was profitable on the previous day demonstrated memory for food-spatiallocation associations over a period of 24 h, retention longer than previously reported for this species. This basic finding was replicated and extended in three experiments. Experiment 1 demonstrated that location-food discriminations were also remembered well when established with successive rather than concurrent procedures. Experiment 2 demonstrated that pigeons can remember two location-food associations over 24 h. Experiment 3 showed that the discrimination training inherent in this paradigm is important for retention; retention was impaired when only the rewarded location was presented. Overall, this research suggests that cross-species differences in spatial memory performance may be due to quantitative rather than qualitative differences in the memory system underlying performance.  相似文献   

14.
In Experiment 1, pigeons were trained to discriminate short (2 sec) and long (8 sec) durations of tone by responding to red and green comparison stimuli. During delay testing, a systematic response bias to the comparison stimulus correct for the long duration occurred. Tests of responding without the tone reduced accuracy on long-sample trials but not on short-sample trials suggesting that the pigeons were attending to the tone and not simply timing the total trial duration. The pigeons were then trained to match short (2 sec) and long (8 sec) durations of light to blue/yellow comparisons. During delay testing, “choose-long errors” occurred following tone durations, but “choose-short errors” occurred following light durations. In Experiment 2, accuracy was assessed on test trials in which the tone and the light signals were simultaneously presented for the same duration or for different durations. Pigeons responded accurately to durations of light, but were unable to accurately respond to durations of tone simultaneously presented with the light. The data from Experiment 1 suggest that there are important differences between light and tone signals with respect to the events that control the termination of timing. The data from Experiment 2 indicate that pigeons cannot simultaneously time visual and auditory signals independently and without interference. Consequently, they are inconsistent with the idea that there is a single internal clock that times both tone and light durations.  相似文献   

15.
According to the mixed memory model (Penney, Gibbon, & Meck, Journal of Experimental Psychology: Human Perception and Performance, 26, 1770–1787, 2000), different clock rates for stimuli with different nontemporal properties must be stored within a single reference memory distribution in order to detect a difference between the clock rates of the different signals. In Experiment 1, pigeons were trained in a between-subjects design to discriminate empty intervals (bound by two 1-s visual markers) and filled intervals (a continuous visual signal). The intervals were signaled by different visual stimuli, and they required responses to different sets of comparison stimuli. Empty intervals were judged as being longer than filled intervals. The difference between the point of subjective equality (PSE) for the empty intervals and the PSE for the filled intervals increased proportionally as the magnitudes of the anchor duration pairs were increased from 2 and 8 s to 4 and 16 s. In Experiment 2, the pigeons were trained to discriminate intervals signaled by the absence of houselight illumination (Group Empty) or the presence of houselight illumination (Group Filled). The psychophysical timing functions for these intervals were identical to each other. The results of Experiment 1 indicate that memory mixing is not necessary for detecting a timing difference between empty and filled intervals in pigeons. The results of Experiment 2 suggest that the nature of the stimuli that signal the empty and filled intervals impacts how pigeons judge the durations of empty and filled intervals.  相似文献   

16.
Egger and Miller (1962) hypothesized that the conditioned reinforcing value of stimuli depends on their information value. Egger and Miller and others have tested this hypothesis by comparing the conditioned reinforcing value of S1 and S2 following S1-S2-reward training. However, none of these experiments have controlled for differential generalization of conditioned reinforcement value from training to comparison tests. That is, the S1 cue pattern during the conditioned reinforcement tests has been very similar to the S1 cue pattern of training, while the training and test S2 cue patterns have been quite dissimilar. In Experiment 1, pigeons in a procedure unconfounded by differential generalization produced S2 reliably more frequently than S1, and pigeons in a confounded procedure produced S1 somewhat more frequently than S2. A significant groups × stimuli interaction was attributed to differential stimulus generalization from training to test for S1 and S2 in the confounded condition. In Experiment 2, pigeons in an unconfounded procedure again produced S2 reliably more frequently under a different testing procedure. The results are interpreted as demonstrating that, following S1-S2-food training trials, S2 is the more effective conditioned reinforcer in unconfounded conditions. A reconceptualization of the information hypothesis is shown to be consistent with these results.  相似文献   

17.
Two experiments employed a delayed conditional discrimination procedure in which half the trials began with the presentation of food and half with no food; following a retention interval, subjects were presented with a choice between red and green keys, a response to one of which was reinforced according to whether the trial had started with food or no food. In Experiment 1, after 38 training sessions during which the retention interval was gradually increased, pigeons performed at a moderate level with intervals of 5 to 7.5 sec. A final test produced a steep forgetting function for food trials, but not for no-food trials; performance was unaffected by the duration of the intertriai interval (10 or 40 sec). Experiment 2 used the delayed conditional discrimination procedure to compare short-term memory in jackdaws (Corvus monedulus) with that in pigeons. Although the performance of the jackdaws was below that of the pigeons at the start of training, they showed more rapid learning over long delays, and, in the final test, a shallower forgetting function for food trials than that shown by pigeons. The results suggested superior short-term memory in jackdaws, which may help to explain the better performance of corvids in general when compared with that of pigeons in certain complex learning tasks.  相似文献   

18.
Herrnstein and Loveland (1964, pp. 549–551) successfully trained pigeons to discriminate pictures showing humans from pictures that did not. In the present study, a go/no-go procedure was employed to replicate and extend their findings, the primary focus of concern being to reevaluate the role of item- and category-specific information. The pigeons readily acquired the discrimination and were also able to generalize to novel instances of the two classes (Experiment 1). Classification of scrambled versions of the stimuli was based on small and local features, rather than on configural and global features (Experiment 2). The presentation of gray-scale stimuli indicated that color was important for classifying novel stimuli and recognizing familiar ones (Experiments 1 and 2). Finally, the control that could possibly be exerted by irrelevant background features was investigated by presenting the pigeons with images of persons contained in former person-absent pictures (Experiment 3). Classification was found to be controlled by both item- and category- specific features, but only in pigeons that were reinforced on person-present pictures was the latter type of information given precedence over the former.  相似文献   

19.
The relationship between the duration of stimuli and their conditioned reinforcing effect was investigated using a learning-tests procedure. In Experiment 1, stimuli were the same duration on training (stimulus → reward) and test (choice response → stimulus). Ten- and 30-sec stimuli provided effective differential conditioned reinforcement but 3-sec stimuli did not. In Experiment 2, different pigeons had each combination of the 3- and 30-sec stimuli on training and test trials. Evidence of conditioned reinforcement was obtained only for the birds with 30-sec stimuli on both training and test. The results were interpreted as indicating that stimuli become effective conditioned reinforcers on test trials only when their duration exceeds the duration of differential short-term memory cues resulting from a difference in the events that precede them on training and test trials.  相似文献   

20.
In Experiment 1, pigeons were trained to discriminate the duration (2 or 8 sec) of an empty interval separated by two 1325-Hz tone markers by responding to red and green comparison stimuli. During delay testing, a choose-short bias occurred at 1 sec, but a robust choose-long bias occurred at 9 sec. Responding in the absence of tone markers indicated that the pigeons were attending to the markers and not simply timing the total trial duration. The birds were then trained to match short (2-sec) or long (8-sec) empty intervals marked by light to blue/yellow comparisons. For both visual and auditory markers, delay testing produced a choose-short bias at 1 sec and a choose-long bias at 9 sec. In Experiment 2, the pigeons were shifted from a fixed to variable intertrial intervals (ITI) within sessions. On trials with tone markers, the duration of both the empty interval and the preceding ITI affected choice responding. On trials with light markers, only the duration of the empty interval influenced choice responding. Subsequent delay testing in the context of variable ITIs replicated the memory biases previously obtained. In Experiment 3, performance was assessed at various delay intervals on trials in which either the first or the second marker was omitted. The data from these omission tests indicated that the first marker initiated timing but that the second marker sometimes initiated the timing of a new interval. Explanations of these effects in terms of the internal clock model of timing are discussed, and a simple quantitative model of the delay interval data is tested.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号