首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 22 毫秒
1.
This study examines how student practice of scientific argumentation using socioscientific bioethics issues affects both teacher expectations of students’ general performance and student confidence in their own work. When teachers use bioethical issues in the classroom students can gain not only biology content knowledge but also important decision-making skills. Learning bioethics through scientific argumentation gives students opportunities to express their ideas, formulate educated opinions and value others’ viewpoints. Research has shown that science teachers’ expectations of student success and knowledge directly influence student achievement and confidence levels. Our study analyzes pre-course and post-course surveys completed by students enrolled in a university level bioethics course (n = 111) and by faculty in the College of Biology and Agriculture faculty (n = 34) based on their perceptions of student confidence. Additionally, student data were collected from classroom observations and interviews. Data analysis showed a disconnect between faculty and students perceptions of confidence for both knowledge and the use of science argumentation. Student reports of their confidence levels regarding various bioethical issues were higher than faculty reports. A further disconnect showed up between students’ preferred learning styles and the general faculty’s common teaching methods; students learned more by practicing scientific argumentation than listening to traditional lectures. Students who completed a bioethics course that included practice in scientific argumentation, significantly increased their confidence levels. This study suggests that professors’ expectations and teaching styles influence student confidence levels in both knowledge and scientific argumentation.  相似文献   

2.
The national science standards, along with prominent researchers, call for increased focus on scientific argumentation in the classroom. Over the past decade, researchers have developed sophisticated online science learning environments to support these opportunities for scientific argumentation. Assessing the quality of dialogic argumentation, however, has proven challenging. Existing analytic frameworks assess dialogic argumentation in terms of the nature of students' discourse, formal argumentation structure, interactions, and epistemic forms of reasoning. Few frameworks, however, connect these assessments to conceptual quality. We present an analytic framework for assessing argumentation in online science learning environments that relates levels of opposition with discourse moves, use of grounds, and conceptual quality. We then apply the proposed framework to students' dialogic argumentation within a representative online science learning environment to investigate the framework's potential affordances as well as to assess issues of reliability and appropriateness. The results suggest that the framework offers significant affordances and that it also offers high interrater reliability for trained coders. The applicability of the framework for offline contexts and future extensions of the framework are discussed in light of these results. © 2007 Wiley Periodicals, Inc. J Res Sci Teach 45: 293–321, 2008  相似文献   

3.
The objective of the current studies was to investigate how epistemic cognition related to specific phases and components of self-regulated learning and its adaptation to learning conditions of varying quality. In a multi-study, mixed method design, we presented university students with science content that relayed conceptual discrepancies and collected quantitative and qualitative data to study how students responded to discrepancies. In Study 1 (n = 42), we collected eye tracking patterns, study times, and metacognitive ratings and found that participants adapted their behavioral processing as a function of their epistemic cognition and discrepancy type. In Study 2 (n = 20), we collected concurrent think-aloud protocols and retrospective interviews to further explore why discrepancies were noticed (or not) and how they were resolved. Results revealed that prior knowledge and epistemic self-efficacy in oneself as an evaluator of knowledge emerged as important themes to detecting and efficiently resolving discrepancies. We conclude with a discussion of theoretical and methodological implications.  相似文献   

4.
Student interest and motivation in STEM subjects has dropped significantly throughout secondary education, for which teacher–student interactions are named as a central reason. This study investigated whether a video-based teacher professional development (TPD) intervention on productive classroom discourse improved students' learning motivation and interest development over the course of a school year. The teachers' intervention group (IG; n = 6) was compared with a control group (CG; n = 4) who participated in a traditional TPD programme on classroom discourse. The teachers showed a significant increase in constructive feedback and decrease in simple feedback as a function of the treatment. Pre- and post-tests revealed that students in the IG (n = 136) significantly increased their perceived autonomy, competence and intrinsic learning motivation as compared with those in the CG (n = 90). They also showed significantly greater interest changes in the subjects compared with their peers in the CG.  相似文献   

5.
Since the late 1990s, there has been consensus among educational researchers that argumentation should play a central role in science education. Although there has been extensive relevant research, it is not clear enough how oral argumentation spontaneously occurs in science teaching. This is particularly important with regard to the empirical evidence suggesting the effect of discussion of contradictory views on scientific learning. In order to contribute to the research on argumentation in science teaching, we conducted a study that aims to sketch a panoramic view of the uses of oral argumentation in Chilean middle-school science teaching. A total of 153 videotaped science lessons were observed, involving students aged 10–11 and 12–13. Whole-class argumentative discourse was analysed as a function of thematic episodes and teachers' and students' utterances. Results suggest that argumentative discourse in which contradictory points of view are discussed is scarce but when it occurs it does so predominantly within discourse among students. On the contrary, argumentation aimed at justifying points of view is widely used, even more so when students are older.  相似文献   

6.
7.
8.
For students to meaningfully engage in science practices, substantive changes need to occur to deeply entrenched instructional approaches, particularly those related to classroom discourse. Because teachers are critical in establishing how students are permitted to interact in the classroom, it is imperative to examine their role in fostering learning environments in which students carry out science practices. This study explores how teachers describe, or frame, expectations for classroom discussions pertaining to the science practice of argumentation. Specifically, we use the theoretical lens of a participation framework to examine how teachers emphasize particular actions and goals for their students' argumentation. Multiple-case study methodology was used to explore the relationship between two middle school teachers' framing for argumentation, and their students' engagement in an argumentation discussion. Findings revealed that, through talk moves and physical actions, both teachers emphasized the importance of students driving the argumentation and interacting with peers, resulting in students engaging in various types of dialogic interactions. However, variation in the two teachers' language highlighted different purposes for students to do so. One teacher explained that through these interactions, students could learn from peers, which could result in each individual student revising their original argument. The other teacher articulated that by working with peers and sharing ideas, classroom members would develop a communal understanding. These distinct goals aligned with different patterns in students' argumentation discussion, particularly in relation to students building on each other's ideas, which occurred more frequently in the classroom focused on communal understanding. The findings suggest the need to continue supporting teachers in developing and using rich instructional strategies to help students with dialogic interactions related to argumentation. This work also sheds light on the importance of how teachers frame the goals for student engagement in this science practice.  相似文献   

9.
Research and practice has placed an increasing emphasis on aligning classroom practices with scientific practices such as scientific argumentation. In this paper, I explore 1 challenge associated with this goal by examining how existing classroom practices influence students' engagement in the practice of scientific argumentation. To do so, I present discourse data from 2 middle school classes engaged in argumentation activities. For each class, I compare existing classroom practices to a discussion designed to facilitate argumentation. My analysis reveals that the existing classroom practices influenced the way in which students responded to the disparate ideas being discussed and that the immediate learning environment influenced the frequency with which students justified their ideas and directly responded to one another. This study suggests that the goal structures that aligned with the existing classroom practices carried over to students' argumentative interactions, influencing how they responded to the disparate ideas. However, the immediate learning environment—including activity structure, software tools, and teaching strategies—seemed to foster student-to-student interactions and justification of ideas.  相似文献   

10.
Science teaching deals with abstract concepts and processes that very often cannot be seen or touched. The development of Java, Flash, and other web-based applications allow teachers and educators to present complex animations that attractively illustrate scientific phenomena. Our study evaluated the integration of web-based animated movies into primary schools science curriculum. Our goal was to examine teachers’ methods for integrating animated movies and their views about the role of animations in enhancing young students’ thinking skills. We also aimed at investigating the effect of animated movies on students’ learning outcomes. Applying qualitative and quantitative tools, we conducted informal discussions with science teachers (N = 15) and administered pre- and post-questionnaires to 4th (N = 641) and 5th (N = 694) grade students who were divided into control and experimental groups. The experimental group students studied science while using animated movies and supplementary activities at least once a week. The control group students used only textbooks and still-pictures for learning science. Findings indicated that animated movies support the use of diverse teaching strategies and learning methods, and can promote various thinking skills among students. Findings also indicated that animations can enhance scientific curiosity, the acquisition of scientific language, and fostering scientific thinking. These encouraging results can be explained by the fact that the students made use of both visual-pictorial and auditory-verbal capabilities while exploring animated movies in diverse learning styles and teaching strategies.  相似文献   

11.
There is, no doubt, untapped potential in using technological tools to enhance the understanding of science concepts. This study examines the potential by observing 7th and 8th grade middle school students’ (n = 23) use of portable data collection devices in a nine-week elective class, Exploring Technologies. Students’ use of the data collection devices and subsequent interactions were traced through audiocassette and videocassette recordings, field notes, and student artifacts. The culminating activity for the course was a scientific investigation that required students to use the technologies to answer student-selected research questions. To illustrate the use of technology as a mediatory tool, an inquiry investigation of three student groups is described. In examining the three groups of middle school students the researchers encountered specific evidence of technology maximizing students’ science learning. The students were able to use the portable data collection devices in their investigations as they discussed scientific ideas related to temperature and heat. The study’s findings indicated that the three student groups were able to use the tools to conduct scientific inquiry and engage in scientific discourse. Further research on instructional approaches that allow students to develop expertise by using technology as tools to construct knowledge about complex phenomena is encouraged.  相似文献   

12.
Engaging in argumentation from evidence is challenging for most middle school students. We report the design of a media-based mentoring system to support middle school students in engaging in argumentation in the context of a game-infused science curriculum. Our design emphasizes learners apprenticing with college student mentors around the socio-scientific inquiry of a designed video game. We report the results of a mixed-methods study examining the use of this media-based mentoring system with students ages 11 through 14. We observed that the discourse of groups of students that engaged with the game-infused science curriculum while interacting with college student mentors via a social media platform demonstrated statistically significant higher ratings of cognitive, epistemic, and social aspects of argumentation than groups of students that engaged with the social media platform and game-infused science curriculum without mentors. We further explored the differences between the Discourses of the mentored and non-mentored groups. This analysis showed that students in the mentored groups were invited, guided, and socialized into roles of greater agency than students in the non-mentored groups. This increased agency might explain why mentored groups demonstrated higher levels of scientific argumentation than non-mentored groups. Based on our analyses, we argue that media-based mentoring may be designed around a video game to support middle school students in engaging in argumentation from evidence.  相似文献   

13.
课堂话语互动与学习辩证地联接在一起。学习科学的新发展要求不应仅仅研究课堂话语互动环境与结果,更需要实时分析课堂话语互动过程。交互论证分析超越了传统的静态的图尔敏论证模式,能够动态地实时分析课堂话语互动。基于此,本研究聚焦于争论这一典型的课堂话语互动形式,借助交互论证分析,对研究案例进行三步骤分析,不但揭示了学生话语互动中所运用的交互形式,阐明了话语互动质量,而且清晰地描绘了课堂话语互动如何促进个体的深度学习,学生个体的意义构建如何影响小组论断形成,以及作为机构代表的教师如何促进学生的学习。研究表明课堂争论有效促进了学生的深度学习,同时也进一步指出构建新型的教师角色的必要性。  相似文献   

14.
15.
This study investigated the effects of students’ prior science knowledge and online learning approaches (social and individual) on their learning with regard to three topics: science concepts, inquiry, and argumentation. Two science teachers and 118 students from 4 eighth-grade science classes were invited to participate in this research. Students in each class were divided into three groups according to their level of prior science knowledge; they then took either our social- or individual-based online science learning program. The results show that students in the social online argumentation group performed better in argumentation and online argumentation learning. Qualitative analysis indicated that the students’ social interactions benefited the co-construction of sound arguments and the accurate understanding of science concepts. In constructing arguments, students in the individual online argumentation group were limited to knowledge recall and self-reflection. High prior-knowledge students significantly outperformed low prior-knowledge students in all three aspects of science learning. However, the difference in inquiry and argumentation performance between low and high prior-knowledge students decreased with the progression of online learning topics.  相似文献   

16.
17.
ABSTRACT

There exists bias among students that learning organic chemistry topics requires rote learning. In this paper, we address such bias through an organic chemistry activity designed to promote argumentation. We investigated how pre-service science teachers engage in an argumentation about conformational analysis. Analysis of the outcomes concentrated on (a) pre-service teachers’ understanding of conformations of alkanes (b) the nature of the pre-service teachers’ discourse; (c) the quality of pre-service teachers’ argumentation; and (d) pre-service teachers’ spatial ability. Various measures were used to trace (a) conceptual understanding through the answers in the writing frames, (b) the nature of the pre-service teachers’ discourse using two different codes, (c) the quality of pre-service teachers’ argumentation by counting the number of episodes with higher-level argumentation, and (d) spatial ability by Spatial Ability Test. The results showed that high performing groups had multiple rebuttals in their argumentation and low performing groups had problems in evaluating the credibility of evidence. Furthermore, we observed that spatial abilities play an important role in pre-service teachers’ engagement in argumentation. The findings help understanding of how to further enhance pre-service teachers’ conceptual understanding and engagement in argumentation regarding organic chemistry concepts.  相似文献   

18.
Argumentation skills play a crucial role in science education and in preparing school students to act as informed citizens. While processing conflicting scientific positions regarding topics such as sustainable development in the domain of ecology, argumentation skills such as evaluating arguments or supporting theories with evidence are beneficial for developing deep understanding and well-grounded conclusions. We developed a 50-min training intervention to foster argumentation skills in the domain of ecology on topics related to sustainable development and analyzed its effects in a control-group design: (a) training intervention to foster argumentation skills (n = 41), (b) no such training intervention (n = 42). Results showed that this short-term training intervention successfully fostered three components of argumentation skills (i.e., evaluative knowledge, generative knowledge, and argument quality) and declarative knowledge about argumentation. The positive effect on declarative knowledge was stable 1 week after the training and it was mediated by learning processes during the training intervention: self-explaining the principles of argumentation underlying the video-based examples mediated the effect on declarative knowledge 1 week after the training. In short, the training intervention is an effective instructional method to enhance argumentation skills as well as declarative knowledge about argumentation.  相似文献   

19.
Learning science interpreted in existing theoretical frameworks often means that students are assimilated, accommodated or enculturated from the entity of the vernacular world to the entity of the scientific world. However, there are some unsolved questions as to how students can best learn purely a new language or new knowledge of science. The purpose of this study is to conduct microanalysis of moment-to-moment interactions in order to understand how science language is taught and learned in details. Informed by Bakhtin’s dialogism, the analysis indicates that learning science is a process of appropriating authoritative discourse into internally persuasive discourse. Based on our analysis and findings, we propose the framework of discursive evolution to describe the process of teaching and learning the language of science. Four different stages of discursive evolution are identified to demonstrate the discursive changes during the course of science teaching and learning discourse: (a) using deictic references to connect scientific terminologies, (b) understanding science terminologies through its derivatives, (c) communicating science practices conventionally through science terminologies, and (d) communicating science practices innovatively through mutated science terminologies. The findings suggest that science teaching and learning comprise a heterogeneous process which draws on both science and non-science language and is a constantly evolving process. Understanding teaching and learning as a heterogeneous and constantly evolving process allows us to reunite the roles of teachers and students as mutually responsible collaborators rather than science knowledge givers and consumers.  相似文献   

20.
ABSTRACT

The aim of the study is to analyse teachers’ efforts to develop secondary school students’ knowledge and argumentation skills of what constitutes scientific theories. The analysis is based on Leontiev’s three-level structure of activity (activity, action, and operation), as these levels correspond to the questions why, what, and how content is taught. The unit of analysis was a school development project in science education, where design-based interventions were conducted. Data comprised notes and minutes from eight meetings, plans, and video recordings of the lessons, and a written teacher evaluation. The teachers’ (n = 7) learning actions were analysed to identify (a) concept formation in science education, (b) expressions of agency, (c) discursive manifestations of contradictions, and (d) patterns of interaction during the science interventions. Three lessons on what constitutes scientific theories were implemented in three different student groups (n = 24, 23, 24), framed by planning and evaluation meetings for each lesson. The results describe (1) the ways in which teachers became more skilled at ensuring instruction met their students’ needs and (2) the ways in which teachers’ operations during instruction changed as a result of their developed knowledge of how to express the content based on theoretical assumptions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号