首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 546 毫秒
1.
吉林省蛟河市境内大石河新生代玄武岩中含有丰富的地幔橄榄岩包体,详细的岩石学与矿物学研究显示,这些包体的主要岩石类型为尖晶石二辉橄榄岩-方辉橄榄岩,未发现石榴石橄榄岩.岩相学及地球化学资料显示它们都是经历过熔体抽取而形成的岩石圈地幔残留.矿物平衡温度计算发现,本区的这些地幔橄榄岩包体来自地下40~60km深度,且下部以二辉橄榄岩为主,而上部以贫单斜辉石的二辉橄榄岩和方辉橄榄岩为主,显示明显的岩石圈地幔分层现象.Sr-Nd-Hf同位素资料反映这些地幔包体均表现为亏损性质,而Re-Os同位素资料确定上述岩石圈地幔形成于中元古代,明显老于上覆地壳的新元古宙时代,反映壳幔年龄上的解耦.因此我们推测,该区曾经历过华北克拉通类似的早期岩石圈地幔的整体丢失事件,然后形成于其它地区的中元古宙岩石圈地幔在本区增生.  相似文献   

2.
五相(橄榄石+斜方辉石+单斜辉石+石榴石+尖晶石)共存的地幔橄榄岩捕虏体是来自岩石圈地幔相转变带的直接样品.中国东部及西秦岭地区晚第三至第四纪碱性火山岩携带的少量五相共存的地幔橄榄岩捕虏体为探讨这些地区新生代岩石圈地幔中相转变带提供了宝贵的样品.本文根据地幔橄榄岩捕虏体中石榴石和尖晶石的产出状况,将这些橄榄岩捕虏体分为三类:第一类橄榄岩中尖晶石为粒状残核,尖晶石外缘被石榴石的反应边包围.这种橄榄岩捕虏体代表尖晶石-石榴石相转变带的上限,故称为尖晶石带橄榄岩;第二类橄榄岩中尖晶石和石榴石以单颗粒零散分布为特征,二者共存但未见明显的相转变关系.这类橄榄岩多位于相转变带中部,拟称为尖晶石-石榴石过渡带橄榄岩;第三类橄榄岩中以石榴石为主,尖晶石和辉石等微晶构成石榴石反应边.这类橄榄岩代表尖晶石-石榴石相转变带的下限,故称为石榴石带橄榄岩.因此,根据不同类型橄榄岩捕虏体中矿物的组成,结合温度压力估算即可确定岩石圈地幔中相转变带的深度和厚度.本文通过对中国东部及西秦岭地区晚第三至第四纪碱性火山岩携带的尖晶石-石榴石二辉橄榄岩捕虏体的温度压力估算来进一步厘定中国东部新生代岩石圈地幔中的相转变带深度和厚度.  相似文献   

3.
汉诺坝和鹤壁的新生代碱性玄武岩中取尖晶橄榄岩捕虏体及单斜辉石岩样品.分析其中铁同位素及其他矿物元素成分,分析华北克拉通地下岩石圈地幔铁同位素的特点。  相似文献   

4.
华北克拉通东北缘龙岗第四纪玄武岩的地球化学研究为大陆碱性玄武岩的成因以及源区的性质提供了重要的依据.龙岗第四纪玄武岩为碱性玄武岩,具有类似OIB的REE和微量元素分配特征.岩石的Sr-Nd同位素轻度亏损(87Sr/86Sr =0.7044~0.7048,εNd=0.6~2.1),具有Dupal异常的高放射性成因Pb同位素组成(^206 Pb/^204 Pb=17.734~18.194,^207 Pb/^204 Pb=15.553~15.594,^208 Pb/%204 Pb=38.322~38.707).这种地球化学特征指示了原始岩浆起源于<70km深度的地幔,并经历了一定程度的橄榄岩、单斜辉石和钛.铁氧化物的结晶分异.岩浆源区中以来类似MORB软流圈物质的熔体为主,另外有少量来自EM Ⅰ性质的富集岩石圈地幔以及俯冲流体/熔体的物质贡献,显示了深部岩石圈-软流圈一定程度的相互作用以及太平洋板块俯冲的影响.岩浆源区多种端元组分的存在表明该地区岩石圈的减薄/置换受到多种因素的影响.  相似文献   

5.
基础科学伊通上地幔剪切带捕虏体中富铝尖晶石的地球化学特征GeochemicalCharacteristicsoftheAluminum-EnrichedSpinelsinXenolithsfromtheUpperMantleShearBeltinYitong,NortheasternChina摘要:伊通上地幔剪切带中辉石岩、二辉橄榄岩和易剥橄榄岩是3个主要地幔捕虏体,其中尖晶石的化学成分以富铝为特征.辉石岩中尖晶石在薄片下呈绿色,为铝含量高、铬含量低的铝尖晶石;与之相比,二辉橄榄岩和易剥橄榄岩中尖晶石在薄片下呈棕色,为铝含量相对较低、铬含量相对较高的富铝铬尖晶石.尖晶石的颜色与Al、Mg、Cr、Fe含量有关.在不同捕虏体中…  相似文献   

6.
应用热爆裂质谱测量和高温熔融样品释气技术分别测定了山旺、栖霞和鹤壁新生代玄武岩中橄榄岩捕虏体中的橄榄石颗粒的流体和稀有气体组成.结果表明,鹤壁方辉橄榄岩具低于大气的3He/4He比值0.778Ra和大气成因的Ne、Ar、Kr、Xe组成.三个地区饱满地幔样品均以还原性流体为主,CO2/He、N2/3He、N2/Ar比值分别为(0.62~4144)×109、(2631~64482)×109、269~73467.这些还原型流体偏离典型的幔源流体组成而表现出明显的碳和氮元素过剩,具有大气-地幔-壳源组份混合的特点,反映了大气和富含有机质的壳源组份在新生岩石圈上地幔中的影响.同时,这些饱满地幔样品的Ne、Ar、Kr、Xe具有大气属性,反映了大气型稀有气体在上地幔源区的广泛混染.其中,山旺和栖霞的3He/4He比值分别为(2.91~3.07)Ra、(1.79~4.01)Ra,均高于大气低于MORB,具有交代富集地幔的特点,而鹤壁则具有类似MORB的3He/4He比值(7.03~7.05)Ra.这样的流体和稀有气体组成差别显示华北东部新生岩石圈地幔具亏损MORB型的特点并含壳源组份,且其东缘所含壳源组份比例高于中部,说明华北东部新生岩石圈地幔中有俯冲洋壳组份的记录.  相似文献   

7.
地幔成分与其上覆地壳年龄存在相关关系,年龄越老,地幔越亏损玄武质组分.本文对产于东北和华北地区的尖晶石相橄榄岩包体的成分进行了统计分析,结果显示东北地区橄榄岩包体比华北地区包体更亏损玄武质组分.这说明东北岩石圈地幔比华北上地幔更难熔,但其上覆地壳年龄却远小于华北地区地壳的年龄.这种地壳年龄和地幔组分之间的解耦暗示东北和华北地区的岩石圈地幔形成之后发生了大规模的改造.华北地区的壳幔解耦与中生代岩石圈减薄和增生有关,而东北地区的壳幔解耦则是该区地壳的多期改造和中生代岩石圈减薄和增生等过程综合作用的结果.两地区地幔成分的差异显然与部分熔融程度的不同有关,但影响部分熔融程度的因素很多,目前尚不能确定.包体的平衡温度统计和地温线对比显示东北岩石圈的地温梯度低于华北的地温梯度,可能是东北地区岩石圈减薄的时间要早于华北地区,或者华北岩石圈减薄程度可能大于东北地区的结果,因此中国东部岩石圈减薄存在时空不均一性.  相似文献   

8.
克拉玛依白碱滩尖晶石二辉橄榄岩主要由橄榄石、单斜辉石、斜方辉石和尖晶石组成,橄榄石和斜方辉石均发生程度不等的蛇纹石化.单斜辉石一般很新鲜.单斜辉石和斜方辉石均发育出溶结构,出溶条纹或者平直或者发生舒缓的弯曲变形(即便是在发生弯曲的情况下也是完全平行的).透辉石-普通辉石出溶体一般呈针状(直径一般为1μm,长度>150μm),顽火辉石出溶条纹直径一般为1~3μm(长度>300μm).斜方辉石主晶属于顽火辉石-易变辉石,单斜辉石主晶为透辉石(成分很均一).地质温度压力估算表明,白碱滩二辉橄榄岩中辉石出溶结构发生的温度为700℃~1000℃、压力为2.0~2.7GPa,它们代表辉石出溶结构形成的最低PT条件.白碱滩二辉橄榄岩至少经历了三个演化阶段:原始辉石与尖晶石和橄榄石平衡共生(阶段Ⅰ,>94km);随着地幔上隆,原始辉石结构不稳定,分解并形成出溶结构(阶段Ⅱ,700℃~1000℃),斜方辉石开始分解的深度为94km,单斜辉石开始分解的深度为78km;之后,蛇绿岩经历的侵位事件导致辉石发生塑性变形(阶段Ⅲ).蛇绿岩侵位之前,地幔岩曾发生了>50km的隆升,而且,在隆升过程中地幔岩没有发生明显部分熔融(地幔岩因此没有经历明显的岩浆抽提过程).  相似文献   

9.
正长岩-辉长岩组合的形成通常与板内伸展构造有关,它们可由同源岩浆演化形成,也可以由两种独立起源的岩浆结晶形成.本文选择赣南晚中生代早期黄埠正长岩和车步辉长岩进行了详细的年代学和岩石地球化学研究,旨在探讨它们的起源及其与岩石圈地幔演化的关系.LA-ICP-MS锆石U-Pb定年结果表明:黄埠正长岩和车步辉长岩形成于≈178Ma,为同时期岩浆作用的产物.主量元素、微量元素和Nd同位素地球化学特征表明它们并非由同源岩浆演化形成.初步研究表明,黄埠正长岩和车步辉长岩可能都起源于受软流圈来源熔体交代富集的岩石圈地幔,熔融发生在上地幔尖晶石-石榴石相转换带深度,且岩浆在结晶演化过程中发生了较低程度的地壳混染作用.与车步辉长岩相比,黄埠正长岩有高的不相容元素含量、Ce/Yb、La/Yb、Sm/Yb比值和高的εNd(t)值,表明黄埠正长岩的岩浆起源相对更深,且其岩石圈地幔源区经历了更高程度的交代作用.因此,赣南正长岩-辉长岩是板内伸展构造背景下,不同程度软流圈-岩石圈相互作用的反映.  相似文献   

10.
在国家自然科学基金面上项目、重点项目和国家杰出青年基金项目的持续资助下,西北大学高山教授及其合作者于1992年以来研究提出了华北克拉通和秦岭.大别造山带下地壳拆沉作用的地质、地球化学和岩石物理学证据,并建立了下地壳拆沉作用的化学地球动力学模型。近年来他们通过对辽西晚侏罗世高镁中酸性火山岩的研究,发现这些火山岩不仅具有高镁-铬-镍-锶和低钇含量,还含有铬铁矿,斜方辉石斑晶具有核部低镁与幔部高镁的反环带,含有大量25亿年华北克拉通前寒武纪岩石特征的继承锆石,锶-钕同位素组成与来自华北克拉通下地壳榴辉岩包体部分熔融产生的熔体与地幔橄榄岩反应后的产物一致。  相似文献   

11.
Understanding the mineralogy of the Earth''s interior is a prerequisite for unravelling the evolution and dynamics of our planet. Here, we conducted high pressure-temperature experiments mimicking the conditions of the deep lower mantle (DLM, 1800–2890 km in depth) and observed surprising mineralogical transformations in the presence of water. Ferropericlase, (Mg, Fe)O, which is the most abundant oxide mineral in Earth, reacts with H2O to form a previously unknown (Mg, Fe)O2Hx (x ≤ 1) phase. The (Mg, Fe)O2Hx has a pyrite structure and it coexists with the dominant silicate phases, bridgmanite and post-perovskite. Depending on Mg content and geotherm temperatures, the transformation may occur at 1800 km for (Mg0.6Fe0.4)O or beyond 2300 km for (Mg0.7Fe0.3)O. The (Mg, Fe)O2Hx is an oxygen excess phase that stores an excessive amount of oxygen beyond the charge balance of maximum cation valences (Mg2+, Fe3+ and H+). This important phase has a number of far-reaching implications including extreme redox inhomogeneity, deep-oxygen reservoirs in the DLM and an internal source for modulating oxygen in the atmosphere.  相似文献   

12.
Geophysical observations suggest that the transition zone is wet locally. Continental and oceanic sediment components together with the basaltic and peridotitic components might be transported and accumulated in the transition zone. Low-velocity anomalies at the upper mantle–transition zone boundary might be caused by the existence of dense hydrous magmas. Water can be carried farther into the lower mantle by the slabs. The anomalous Q and shear wave regions locating at the uppermost part of the lower mantle could be caused by the existence of fluid or wet magmas in this region because of the water-solubility contrast between the minerals in the transition zone and those in the lower mantle. δ-H solid solution AlO2H–MgSiO4H2 carries water into the lower mantle. Hydrogen-bond symmetrization exists in high-pressure hydrous phases and thus they are stable at the high pressures of the lower mantle. Thus, the δ-H solid solution in subducting slabs carries water farther into the bottom of the lower mantle. Pyrite FeO2Hx is formed due to a reaction between the core and hydrated slabs. This phase could be a candidate for the anomalous regions at the core–mantle boundary.  相似文献   

13.
Magmatic liquids, including silicate and carbonate melts, are principal agents of mass and heat transfer in the Earth and terrestrial planets, and they play a crucial role in various geodynamic processes and in Earth''s evolution. Electrical conductivity data of these melts elucidate the cause of electrical anomalies in Earth''s interior and shed light on the melt structure. With the improvement in high-pressure experimental techniques and theoretical simulations, major progress has been made on this front in the past several decades. This review aims to summarize recent advances in experimental and theoretical studies on the electrical conductivity of silicate and carbonate melts of different compositions and volatile contents under high temperature and pressure. The electrical conductivity of silicate melts depends strongly on temperature, pressure, water content and the ratio of non-bridging oxygens to tetrahedral cations (NBO/T). By contrast, the electrical conductivity of carbonate melts exhibits a weak dependence on temperature and pressure due to their fully depolymerized structure. The electrical conductivity of carbonate melts is higher than that of silicate melts by at least two orders of magnitude. Water can increase electrical conductivity significantly and reduce the activation energy of silicate melts. Conversely, this effect is weak for carbonate melts. In addition, the replacement of alkali-earth elements (Ca2+ or Mg2+) with alkali elements causes a significant decrease in the electrical conductivity of carbonate melts. A distinct compensation trend is revealed for the electrical conductivity of silicate and carbonate melts under anhydrous and hydrous conditions. Several important applications of laboratory-based melt conductivity are introduced in order to understand the origin of high-conductivity anomalies in the Earth''s mantle. Perspectives for future studies are also provided.  相似文献   

14.
Understanding the concentration and distribution of water in the Earth''s mantle plays a substantial role in studying its chemical, physical and dynamic processes. After a decade of research, a comprehensive dataset of water content in upper-mantle samples has been built for eastern China, which is now the only place with water-content data from such diverse types of natural samples, and provides an integrated picture of the water content and its distribution in the upper mantle at a continental scale. The main findings include the following: (i) the temporal heterogeneity of the water content in the lithospheric mantle from early Cretaceous (∼120 Ma) to Cenozoic (<40 Ma) was tightly connected with the stability of the North China Craton (from its destruction to its consolidation); (ii) the heterogeneous water content in the Cenozoic lithospheric mantle beneath different blocks of eastern China was not only inherited from tectonic settings from which they came, but was also affected later by geological processes they experienced; (iii) the distinct water content between the lowermost crust and lithospheric mantle of eastern China and its induced rheological contrast at the base of the crust indicate that the continental crust–mantle boundary could behave either in a coupled or decoupled manner beneath different areas and/or at different stages; (iv) the alkali basalts of eastern China demonstrate a heterogeneous distribution of water content in the mantle; local and regional comparisons of the water content between the lithospheric mantle and basalts'' source indicate that the Cenozoic alkali basalts in eastern China were not sourced from the lithospheric mantle. Instead, the inferred high water contents in the mantle sources suggest that the Cenozoic eastern China basalts were likely sourced from the mantle transition zone (MTZ); and (v) both oceanic and continental crusts may carry a certain amount of water back into the deep mantle of eastern China by plate subduction. Such recycled crustal materials have not only created a local water-rich zone, but have also introduced crustal geochemical signatures into the mantle, both accounting for crustal geochemical imprints in the intra-plate magmatic rocks of eastern China.  相似文献   

15.
华北克拉通中部是古元古代岩墙群最为发育的地区.以镁铁质成分为主的岩墙群可以分为变质的和不变质的两类.不变质岩墙群是在1780~1760 Ma之间大约20 Ma时间内形成的,是华北克拉通古元古代最晚期镁铁质岩浆活动的产物.不变质岩墙又可以细分成高Mg-Ti低P、低Mg高Ti-P和高Mg低Ti-P等3组.本文报道了采自丰镇附近高Mg低Ti-P岩墙样品的锆石U-Pb年龄和Hf同位素组成分析结果.新获得的SHRIMP锆石U-Pb年龄为1769±4 Ma,与其它不变质岩墙的锆石、斜锆石U-Pb年龄和^40Ar/^39Ar年龄的范围相同.高Mg低Ti-P岩墙的锆石εHf(t)值的变化范围在-6.4~+0.4之间,平均值为-2.2,略高于时代相近的花岗质岩石.由于镁铁质岩浆在上升、侵位和结晶过程中几乎没有受到地壳物质混染,因而锆石εHf(t)值可以代表镁铁质岩浆的富集的岩石圈地幔源区的特征.文献资料显示,高Mg低Ti-P岩墙的岩石圈地幔源区的87Sr/86Sr初始比值为0.7040~0.7050,平均值为0.7046,εNd(t)值为-5.6~-2.8,平均值为-4.4.  相似文献   

16.
安徽沿江地区地处长江深大断裂带的中部,构造上隶属由华北板块与扬子板块在T2-J2发生陆-陆碰撞形成的大别造山带的前陆带.在J3-K1时期,区内发生了岩石圈伸展减薄背景下的碰撞后到岩石圈拆沉背景下的造山后岩浆活动和相应的壳幔相互作用.形成了广泛分布的碰撞后到造山后火山.侵入杂岩组合.碰撞后岩浆活动大致发生在125~145Ma,铜陵地区辉长岩包体和大量堆积岩的形成标志着这一时期的开始,而富碱岩浆岩的形成标志着这一时期的结束.在这一时期形成的岩石中,繁昌盆地中的中分村组和赤砂组火山岩以及南部侵入岩属于碰撞后岩浆岩组合中的过铝质的长英质岩套;由中部铜陵地区的中酸性侵入岩和北外带侵入岩等构成的中钾-高钾钙碱性岩系和由铜陵地区的中基性侵入岩、庐枞盆地龙门院组和砖桥组火山岩、宁芜盆地龙王山组和大王山组火山岩以及沿长江两岸呈NE方向分布的富碱岩浆岩构成的橄榄安粗岩系属于碰撞后岩浆岩组合中的准铝质的镁铁质-长英质火成岩岩套.造山后岩浆作用大致发生在105~125Ma.宁芜地区辉长岩的侵入标志着这一时期的开始,而宁芜和庐枞地区过碱性岩的形成标志着这一时期的结束.在这一时期形成的岩石中,由繁昌盆地蝌蚪山组火山岩和庐枞盆地双庙组火山岩以及宁芜盆地辉长岩侵入体组成的碱性岩系和由庐枞盆地浮山组火山岩和宁芜盆地娘娘山组火山岩组成的过碱性岩系属于造山后碱性-过碱性火成岩岩套.与碰撞后到造山后岩浆活动相对应,在安徽沿江地区中生代发生了两期壳幔相互作用.其中早期壳幔相互作用表现为起源于岩石圈地幔上部圈层的底侵玄武岩浆与中下地壳间强烈的相互作用,而晚期壳幔相互作用表现为起源于岩石圈地幔下部圈层的玄武岩浆与中下地壳间微弱的相互作用.  相似文献   

17.
18.
Water is transported to Earth''s interior in lithospheric slabs at subduction zones. Shallow dehydration fuels hydrous island arc magmatism but some water is transported deeper in cool slab mantle. Further dehydration at ∼700 km may limit deeper transport but hydrated phases in slab crust have considerable capacity for transporting water to the core-mantle boundary. Quantifying how much remains the challenge.

Water can have remarkable effects when exposed to rocks at high pressures and temperatures. It can form new minerals with unique properties and often profoundly affects the physical, transport and rheological properties of nominally anhydrous mantle minerals. It has the ability to drastically reduce the melting point of mantle rocks to produce inviscid and reactive melts, often with extreme chemical flavors, and these melts can alter surrounding mantle with potential long-term geochemical consequences. At the base of the mantle, water can react with core iron to produce a super-oxidized and hydrated phase, FeO2Hx, with the potential to profoundly alter the mantle and even the surface and atmosphere redox state, but only if enough water can reach such depths [1].Current estimates for bulk mantle water content based on the average H2O/Ce ratio of oceanic basalts from melt inclusions and the most un-degassed basalts, coupled with mass balance constraints for Ce, indicate a fraction under one ocean mass [2], a robust estimate as long as the basalts sampled at the surface tap all mantle reservoirs. The mantle likely contains some primordial water but given that the post-accretion Earth was very hot, water has low solubility and readily degasses from magma at low pressures, and its solubility in crystallizing liquidus minerals is also very low, the mantle just after accretion may have been relatively dry. Thus, it is plausible that most or even all of the water in the current mantle is ‘recycled’, added primarily by subduction of hydrated lithospheric plates. If transport of water to the core–mantle boundary is an important geological process with planet-scale implications, then surface water incorporated into subducting slabs and transported to the core–mantle boundary may be a requirement.Water is added to the basaltic oceanic crust and peridotitic mantle in lithospheric plates (hereafter, slab crust and slab mantle, respectively) at mid-ocean ridges, at transform faults, and in bending faults formed at the outer rise prior to subduction [3]. Estimates vary but about 1 × 1012 kg of water is currently subducted each year into the mantle [4], and at this rate roughly 2–3 ocean masses could have been added to the mantle since subduction began. However, much of this water is returned to the surface through hydrous magmatism at convergent margins, which itself is a response to slab dehydration in an initial, and large, release of water. Meta-basalt and meta-sediments comprising the slab crust lose their water very efficiently beneath the volcanic front because most slab crust geotherms cross mineral dehydration or melting reactions at depths of less than 150 km, and even if some water remains stored in minerals like lawsonite in cooler slabs, nearly complete dehydration is expected by ∼300 km [5].Peridotitic slab mantle may have much greater potential to deliver water deeper into the interior. As shown in Fig. 1a, an initial pulse of dehydration of slab mantle occurs at depths less than ∼200 km in warmer slabs, controlled primarily by breakdown of chlorite and antigorite when slab-therms cross a deep ‘trough’, sometimes referred to as a ‘choke point’, along the dehydration curve (Fig. 1a) [6]. But the slab mantle in cooler subduction zones can skirt beneath the dehydration reactions, and antigorite can transform directly to the hydrated alphabet silicate phases (Phases A, E, superhydrous B, D), delivering perhaps as much as 5 wt% water in locally hydrated regions (e.g. deep faults and fractures in the lithosphere) to transition zone depths [6]. Estimates based on mineral phase relations in the slab crust and the slab mantle coupled with subduction zone thermal models suggest that as much as 30% of subducted water may have been transported past the sub-volcanic dehydration front and into the deeper mantle [4], although this depends on the depth and extent of deep hydration of the slab mantle, which is poorly constrained. Coincidentally, this also amounts to about one ocean mass if water subduction rates have been roughly constant since subduction began, a figure tantalizingly close to the estimated mantle water content based on geochemical arguments [2]. But what is the likely fate of water in the slab mantle in the transition zone and beyond?Open in a separate windowFigure 1.(a) Schematic phase relations in meta-peridotite modified after [6,10,12]. Slab geotherms are after those in [4]. Cold slabs may transport as much as 5 wt% water past ‘choke point 1’ in locally hydrated regions of the slab mantle, whereas slab mantle is dehydrated in warmer slabs. Colder slab mantle that can transport water into the transition zone will undergo dehydration at ‘choke point 2’. How much water can be transported deeper into the mantle and potentially to the core depends on the dynamics of fluid/melt segregation in this region. (b) Schematic showing dehydration in the slab mantle at choke point 2. Migration of fluids within slab mantle will result in water dissolving into bridgmanite and other nominally anhydrous phases with a bulk storage capacity of ∼0.1 wt%, potentially accommodating much or all of the released water. Migration of fluids out of the slab into ambient mantle would also hydrate bridgmanite and other phases and result in net fluid loss from the slab. Conversely, migration of hydrous fluids into the crust could result in extensive hydration of meta-basalt with water accommodated first in nominally anhydrous phases like bridgmanite, Ca-perovskite and NAL phase, but especially in dense SiO2 phases (stishovite and CaCl2-type) that can host at least 3 wt% water (∼0.6 wt% in bulk crust).Lithospheric slabs are expected to slow down and deform in the transition zone due to the interplay among the many factors affecting buoyancy and plate rheology, potentially trapping slabs before they descend into the lower mantle [7]. If colder, water-bearing slabs heat up by as little as a few hundred degrees in the transition zone, hydrous phases in the slab mantle will break down to wadsleyite or ringwoodite-bearing assemblages, and a hydrous fluid (Fig. 1a). Wadselyite and ringwoodite can themselves accommodate significant amounts of water and so hydrated portions of the slab mantle would retain ∼1 wt% water. A hydrous ringwoodite inclusion in a sublithospheric diamond with ∼1.5 wt% H2O may provide direct evidence for this process [8].But no matter if slabs heat up or not in the transition zone, as they penetrate into the lower mantle phase D, superhydrous phase B or ringwoodite in the slab mantle will dehydrate at ∼700–800 km due to another deep trough, or second ‘choke point’, transforming into an assemblage of nominally anhydrous minerals dominated by bridgmanite (∼75 wt%) with, relatively, a much lower bulk water storage capacity (< ∼0.1 wt%) [9] (Fig. 1a). Water released from the slab mantle should lead to melting at the top of the lower mantle [10], and indeed, low shear-wave velocity anomalies at ∼700–800 km below North America may be capturing such dehydration melting in real time [11].The fate of the hydrous fluids/melts released from the slab in the deep transition zone and shallow lower mantle determines how much water slabs can carry deeper into the lower mantle. Presumably water is released from regions of the slab mantle where it was originally deposited, like the fractures and faults that formed in the slab near the surface [3]. If hydrous melts can migrate into surrounding water-undersaturated peridotite within the slab, then water should dissolve into bridgmanite and coexisting nominally anhydrous phases (Ca-perovskite and ferropericlase) until they are saturated (Fig. 1b). And because bridgmanite (water capacity ∼0.1 wt%) dominates the phase assemblage, the slab mantle can potentially accommodate much or all of the released water depending on details of how the hydrous fluids migrate, react and disperse. If released water is simply re-dissolved into the slab mantle in this way then it could be transported deeper into the mantle mainly in bridgmanite, possibly to the core–mantle boundary. Water solubility in bridgmanite throughout the mantle pressure-temperature range is not known, so whether water would partially exsolve as the slab moves deeper stabilizing a melt or another hydrous phase, or remains stable in bridgmanite as a dispersed, minor component, remains to be discovered.Another possibility is that the hydrous fluids/melts produced at the second choke point in the slab mantle at ∼700 km migrate out of the slab mantle, perhaps along the pre-existing fractures and faults where bridgmanite-rich mantle should already be saturated, and into either oceanic crust or ambient mantle (Fig. 1b). If the hydrous melts move into ambient mantle, water would be consumed by water-undersaturated bridgmanite, leading to net loss of water from the slab to the upper part of the lower mantle, perhaps severely diminishing the slab’s capacity to transport water to the deeper mantle and core. But what if the water released from slab mantle migrates into the subducting, previously dehydrated, slab crust?Although slab crust is expected to be largely dehydrated in the upper mantle, changes in its mineralogy at higher pressures gives it the potential to host and carry significant quantities of water to the core–mantle boundary. Studies have identified a number of hydrous phases with CaCl2-type structures, including δ-AlOOH, ϵ-FeOOH and MgSiO2(OH)2 (phase H), that can potentially stabilize in the slab crust in the transition zone or lower mantle. Indeed, these phases likely form extensive solid solutions such that an iron-bearing, alumina-rich, δ-H solid solution should stabilize at ∼50 GPa in the slab crust [12], but only after the nominally anhydrous phases in the crust, (aluminous bridgmanite, stishovite, Ca-perovskite and NAL phase) saturate in water. Once formed, the δ-H solid solution in the slab crust may remain stable all the way to the core mantle boundary if the slab temperature remains well below the mantle geotherm otherwise a hydrous melt may form instead [12] (Fig. 1a). But phase δ-H solid solution and the other potential hydrated oxide phases, intriguing as they are as potential hosts for water, may not be the likely primary host for water in slab crust. Recent studies suggest a new potential host for water—stishovite and post-stishovite dense SiO2 phases [13,14].SiO2 minerals make up about a fifth of the slab crust by weight in the transition zone and lower mantle [15] and recent experiments indicate that the dense SiO2 phases, stishovite (rutile structure—very similar to CaCl2 structure) and CaCl2-type SiO2, structures that are akin to phase H and other hydrated oxides, can host at least 3 wt% water, which is much more than previously considered. More importantly, these dense SiO2 phases apparently remain stable and hydrated even at temperatures as high as the lower mantle geotherm, unlike other hydrous phases [13,14]. And as a major mineral in the slab crust, SiO2 phases would have to saturate with water first before other hydrous phases, like δ-H solid solution, would stabilize. If the hydrous melts released from the slab mantle in the transition zone or lower mantle migrate into slab crust the water would dissolve into the undersaturated dense SiO2 phase (Fig. 1b). Thus, hydrated dense SiO2 phases are possibly the best candidate hosts for water transport in slab crust all the way to the core mantle boundary due to their high water storage capacity, high modal abundance and high-pressure-temperature stability.Once a slab makes it to the core–mantle boundary region, water held in the slab crust or the slab mantle may be released due to the high geothermal gradient. Heating of slabs at the core–mantle boundary, where temperatures may exceed 3000°C, may ultimately dehydrate SiO2 phases in the slab crust or bridgmanite (or δ-H) in the slab mantle, with released water initiating melting in the mantle and/or reaction with the core to form hydrated iron metal and super oxides, phases that may potentially explain ultra-low seismic velocities in this region [1,10]. How much water can be released in this region from subducted lithosphere remains a question that is hard to quantify and depends on dynamic processes of dehydration and rehydration in the shallower mantle, specifically at the two ‘choke points’ in the slab mantle, processes that are as yet poorly understood. What is clear is that subducting slabs have the capacity to carry surface water all the way to the core in a number of phases, and possibly in a phase that has previously seemed quite unlikely, dense SiO2.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号