首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 44 毫秒
1.
This paper investigates secure bipartite consensus tracking of linear multi-agent systems under denial-of-service(DoS) attacks by using event-triggered control mechanism with data sampling. Both bipartite leader-following and containment tracking consensus are considered in this paper. The event-triggered control protocol using sampled-data information is designed to save limited resources. The communication channels are interrupted by intermittent DoS attacks. Sufficient conditions on the sampling periods, attack frequency and attack duration are obtained to ensure secure bipartite tracking consensus of the multi-agent systems. Finally, simulation example is provided to illustrate the effectiveness of the theoretical results.  相似文献   

2.
This paper studies the event-triggered control for discrete-time switched systems under the influence of denial-of-service (DoS) attacks and output quantization. Firstly, the switching is assumed to be slow enough in the sense of average dwell time, and DoS attacks are assumed to be energy-limited by constraining DoS frequency and DoS duration. Secondly, by designing an event-triggered mechanism which integrates switching, DoS attacks and transmission error, the initial state bound is obtained at a finite time. Then, a novel quantization coding method is designed by introducing a monotonically increasing sequence, which guarantees the unsaturation of the quantizer. On the basis of this, the exponential convergence and Lyapounov stability of the closed-loop system are established. Finally, two-tanks system is illustrated to demonstrate the effectiveness of the theoretical analysis.  相似文献   

3.
This paper investigates the security control problem for a class of two-time-scale cyber-physical systems (TTSCPSs) with multiple transmission channels under the denial-of-service (DoS) attacks. A linear TTSCPSs model is first proposed with slow and fast transmission channels, which correspond to slow and fast physical components in terms of their communicating capacities and sampling rates. The measurement data-packets are transmitted via slow and fast transmission channels which are compromised by asynchronous DoS attacks. A novel composite controller depending on the singular perturbation parameter (SPP) is formulated and corresponding switching laws are designed to achieve certain resilience against DoS attacks. Then, by establishing a SPP-dependent Lyapunov function, sufficient conditions are obtained on the duration and frequency of the DoS attacks, such that, for any SPP less than or equal to a predefined upper bound, the input-to-state stability can be guaranteed for the closed-loop TTSCPSs. Finally, a networked DC motor control system is employed to demonstrate the effectiveness of the proposed security control algorithm.  相似文献   

4.
This paper investigates the event-based asynchronous finite-time control for a class of cyber-physical switched systems under Denial-of-Service (DoS) attacks. Considering the attack’s characteristics, we put forward a novel attack-instant-constrained hybrid event-triggered scheme (HETS), which can not only contribute to reducing the network transmission overload, but also well descibe the network denial service behavior under attack interference. An asynchronous and ZOH-based controller is delicately constructed to mitigate the influence of DoS attacks and network-induced delay. A double-mode dependent Lyapunov–Krasovskii functional (LKF) is developed to set up some sufficient finite-time stability criteria for the concerned systems in view of the asynchronous switching effect. Finally, an application example of the urban railway system is offered to verify the proposed control algorithm.  相似文献   

5.
This paper investigates the problem of resilient control for cyber-physical systems (CPSs) described by T-S fuzzy models. In the presence of denial-of-service (DoS) attacks, information transmission over the communication network is prevented. Under this circumstance, the traditional control schemes which are proposed based on perfect measurements will be infeasible. To overcome this difficulty, with the utilization of an equivalent switching control method, a novel gain-switched observer-based resilient control scheme is proposed. According to whether the DoS attack is activated, two different controller synthesis conditions are given by combining the information of the tolerable DoS attacks. In addition, a quantitative relationship between the resilience against DoS attacks and the obtained disturbance attenuation level is revealed, which is helpful for balancing the tradeoff between the abilities to tolerate DoS attacks and attenuate the influence of external disturbance. Finally, simulation results are provided to verify the effectiveness of the proposed switching control scheme.  相似文献   

6.
This paper aims to solve scaled consensus problem for general linear multiagent systems under denial-of-service (DoS) attacks. Firstly, we propose a new scaled disagreement vector and investigate its properties under switching and undirected graphs. Secondly, we establish sufficient conditions in terms of linear matrix inequalities in order to guarantee that the multiagent system achieves scaled consensus under DoS attacks. Contrary to most existing studies where DoS attacks on all the channels are same, in this note, we formulate the problem such that the adversary compromises each agent independently. Moreover, the distributed consensus protocol is investigated for networks with time-varying delay. Finally, two simulation examples are given to demonstrate effectiveness of the proposed design methodologies.  相似文献   

7.
Sampled-data control as an effective mean of digital control has shown its prominent superiority in most practical industries and a zero-order holder (ZOH) is often introduced to maintain continuity of control in the field of sampled-data control system. However, it decreases the control accuracy in a certain extent since the state will be held invariably within each sampling interval. In order to improve the control accuracy, this paper proposes a dynamic model-based control strategy instead of ZOH for a class of switched sampled-data control systems. The model, which is built by abstracting the plant knowledge, is located at the controller side. The controller is set up based on the model state and it provides control input to the switched system. A fixed sampling period is adopted, under which a hybrid-dwell time switching condition is revealed by taking into account asynchronous switching. With reasonable design of switching condition, exponential stability of the closed-loop system can be guaranteed. Finally, advantages of our proposed method are presented through a numerical example by comparing with the result of ZOH-based control.  相似文献   

8.
This paper investigates the input-to-state stabilizing (ISS) problem for Takagi–Sugeno (T–S) fuzzy systems with multiple transmission channels under denial-of-service (DoS) attacks. To achieve ISS, time-triggered data update logics on different channels are determined by linear matrix inequalities (LMIs). Under DoS attacks, a switched fuzzy dynamic output feedback controller which takes the security of premise variables into consideration is constructed. A novel time division mechanism is proposed to deal with the uncertainties caused by DoS attacks at different time periods. The proposed mechanism considers all cases of DoS attacks, which is more general compared to the existing method. Then, sufficient conditions are given to ensure the ISS of T–S fuzzy systems under DoS attacks. Finally, two examples are given to illustrate the effectiveness and merits of the proposed method.  相似文献   

9.
This paper is concerned with the secure bipartite consensus of second-order multi-agent systems under denial-of-service (DoS) attacks. The communication network is an antagonistic network, in which there is cooperative or competitive relationship between neighboring agents. Meanwhile, information cannot be transmitted when the system is attacked. A novel event-triggered control algorithm based on sampled data is proposed to save limited resources and exclude the Zeno behavior. By applying the convergence of monotone sequences, graph theory as well as the discrete-time Lyapunov function method, some sufficient conditions on threshold parameters, frequency and duration of DoS attacks, and sampling period are derived to ensure the bipartite consensus under DoS attacks. Finally, the correctness and advantages of theoretical results are demonstrated by a numerical simulation.  相似文献   

10.
This paper focuses on an output feedback stabilization problem for a class of switched nonlinear systems in non-strict feedback form under asynchronous switching via sampled-data control. Since the output of the considered systems is measurable only at the sampling instants, an observer is designed with a tunable scaling gain to estimate the state, and then a sampled-data controller is constructed with the sampled estimated state. As a distinctive feature, a merging virtual switching signal is introduced to describe the asynchronous switching generated by detecting the activation of the subsystem. By choosing an appropriate Lyapunov function, it is proved that the constructed controller with dwell time constraint can globally stabilize the considered systems under asynchronous switching. Finally, the effectiveness of the proposed method is illustrated by two examples.  相似文献   

11.
This paper investigates the observer-based consensus control for high-order nonlinear multi-agent systems (MASs) under denial-of-service (DoS) attacks. When the DoS attacks appear, the communication channels are destroyed, and the blocked information may ruin the consensus of MASs. A switched state observer is designed for the followers to observe the leader’s state whether the DoS attacks occur or not. Then, a dynamic event-triggered condition is proposed to reduce the consumption of communication resources. Moreover, an observer-based and dynamic event-triggered controller is formulated to achieve leader-following consensus through the back-stepping method. Additionally, the boundedness of all closed-loop signals is obtained based on the Lyapunov stability theory. Finally, the simulation results demonstrate the effectiveness of the presented control strategy under DoS attacks.  相似文献   

12.
《Journal of The Franklin Institute》2023,360(13):10365-10385
This paper investigates a spatiotemporal sampled-data fuzzy control strategy for switched singularly perturbed partial differential equation (PDE) systems, where the systems’ operation modes obey average dwell-time switching mechanism. To efficiently deal with nonlinear terms and guarantee the system stability for the considered systems, a spatiotemporal sampled-data fuzzy control scheme is developed. Furthermore, based on the fact that mode mismatch phenomena during switching and sampling, through formulating novel Lyapunov functionals (LFs) with the discontinuous terms and mode-dependent two-sided looped-functionals, which can fully utilize the state information of the sampling period, a new exponential stability criterion is provided for the target systems. Finally, an example is provided to prove the validity of the proposed control approach.  相似文献   

13.
A novel distributed secondary voltage and frequency control strategy is proposed with the Zeno-free event-triggered scheme for an island alternating current (AC) microgrid under Denial-of-Service (DoS) attacks. A DoS attack compensation mechanism and an event-triggered mechanism on the basis of the checking scheme are developed. Then, a secure event-checked based event-triggered secondary control method is explored to guarantee the tracking performance of the microgrid under DoS attacks. Further, some linear matrix inequalities (LMIs)-based sufficient conditions are derived to design the controller. What’s more, the proposed asynchronous periodic triggering method can efficiently save communication resources and further reduce the update number of the controller. Finally, the efficiency of this work is verified by an islanded AC microgrid with comparisons.  相似文献   

14.
This study is concerned with the event-triggered sliding mode control problem for a class of cyber-physical switched systems, in which the Denial-of-Service (DoS) attacks may randomly occur according to the Bernoulli distribution. A key issue is how to design the output feedback sliding mode control (SMC) law for guaranteeing the dynamical performance of the closed-loop system under DoS attacks. To this end, an event-triggered mechanism is firstly introduced to reduce the communication load, under which the measurement signal is transmitted only when a certain triggering condition is satisfied. An usable output signal for the controller is constructed to compensate the effect of unmeasured states and DoS attacks. And then, a dynamic output feedback sliding mode controller is designed by means of the attack probability and the compensated output signals. Both the reachability and the mean-square exponential stability of sliding mode dynamics are investigated and the corresponding sufficient conditions are obtained. Finally, some numerical simulation results are provided.  相似文献   

15.
In this paper, the dynamic event-based resilient consensus control of the multiple networked Euler-Lagrangian (E-L) systems under the Denial of Service (DoS) attacks is considered. Compared with linear cyber-physical systems, nonlinear networked E-L systems are more complex and closer to actual mechanical systems. For the situation where the topology is a strongly connected directed topology, a controller based on a dynamic event-trigger mechanism is designed to achieve consensus control for the networked E-L system in the absence of DoS attacks. Sufficient conditions are presented, which can guarantee the closed-loop system be stable. Then the resilient consensus problem of event-based controllers under energy-constrained DoS attacks is analyzed. The conditions related to the duration and frequency of DoS attacks are given. Zeno behavior is proved does not exist in the proposed control scheme. Finally, some numerical simulation results are given for verifying the theoretical results.  相似文献   

16.
In this paper, the issue of leader-following consensus for nonlinear multi-agent systems (NMASs) suffered from uncertain nonhomogeneous Markov switching (UNMS) and denial-of-service (DoS) cyber attacks is studied. In contrast with the existing results on NMASs with a fixed topological structure, the communication topology is governed by an UNMS jump process, where the transition rates (TRs) of UNMS are considered to be partially known or completely unknown. Also, the changes of communication topologies caused by frequently DoS cyber attacks are taken into consideration, which will destroy the chains of communication and lead to network paralysis in NMASs. In view of this, based on the stochastic technique and multiple Lyapunov functional protocol, mean-square leader-following consensus conditions related to NMASs with the UNMS and DoS cyber attacks are proposed. Finally, the effectiveness of the presented theoretical results is validated by numerical example.  相似文献   

17.
In this paper, the secure synchronization control problem of a class of complex time-delay dynamic networks (CTDDNs) under denial of service (DoS) attacks is studied. Based on the pinning control strategy, a non-fragile sampling controller is designed for a small number of nodes in the complex network. It can effectively solve the problem of limited communication resources and has good anti-interference performance. In order to resist the influence of DoS attacks, an improved comparator algorithm is designed to obtain the specific information of DoS attacks, including the upper and lower bounds of the DoS attacks duration, the DoS attacks frequency and the specific active/sleeping interval of DoS attacks. Based on Lyapunov stability theory and by designing the pinning non-fragile sampling controller, new security synchronization criteria are established for CTDDNs. Finally, two numerical examples are given to verify the validity of the theories.  相似文献   

18.
In this study, a dynamic event-triggered control problem is addressed for nonlinear networked control systems (NCSs) subject to denial-of-service (DoS) attacks. Assume that data from the plant to the controller is transmitted via a wireless transmission channel under malicious DoS attacks characterized by frequency and duration properties. On the premise of ensuring the stability and minimum inter-event time (MIET) of the systems, dynamic event-triggered mechanisms (DETMs) are proposed for the hybrid dynamic system to withstand a certain degree of DoS attacks. Three event-triggered schemes are designed for the most existing state-based control systems which further enlarge the inter-event times, and the stabilization conditions of hybrid dynamic system are given. Finally, illustrative examples are provided to verify the effectiveness of the presented theoretical results.  相似文献   

19.
The distributed event-triggered secure consensus control is discussed for multi-agent systems (MASs) subject to DoS attacks and controller gain variation. In order to reduce unnecessary network traffic in communication channel, a resilient distributed event-triggered scheme is adopted at each agent to decide whether the sampled signal should be transmitted or not. The event-triggered scheme in this paper can be applicable to MASs under denial-of-service (DoS) attacks. We assume the information of DoS attacks, such as the attack period and the consecutive attack duration, can be detected. Under the introduced communication scheme and the occurrence of DoS attacks, a new sufficient condition is achieved which can guarantee the security consensus performance of the established system model. Moreover, the explicit expressions of the triggering matrices and the controller gain are presented. Finally, simulation results are provided to verify the effectiveness of the obtained theoretical results.  相似文献   

20.
This paper is concerned with the problem of state feedback stabilization of a class of discrete-time switched singular systems with time-varying state delay under asynchronous switching. The asynchronous switching considered here means that the switching instants of the candidate controllers lag behind those of the subsystems. The concept of mismatched control rate is introduced. By using the multiple Lyapunov function approach and the average dwell time technique, a sufficient condition for the existence of a class of stabilizing switching laws is first derived to guarantee the closed-loop system to be regular, causal and exponentially stable in the presence of asynchronous switching. The stabilizing switching laws are characterized by a upper bound on the mismatched control rate and a lower bound on the average dwell time. Then, the corresponding solvability condition for a set of mode-dependent state feedback controllers is established by using the linear matrix inequality (LMI) technique. Finally, two numerical examples are provided to illustrate the effectiveness of the proposed method.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号