首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this paper, the global exponential robust stability is investigated for Cohen-Grossberg neural network with time-varying delays and reaction-diffusion terms, this neural network contains time-invariant uncertain parameters whose values are unknown but bounded in given compact sets. Neither the boundedness and differentiability on the activation functions nor the differentiability on the time-varying delays are assumed. By using general Halanay inequality and M-matrix theory, several new sufficient conditions are obtained to ensure the existence, uniqueness, and global exponential robust stability of equilibrium point for Cohen-Grossberg neural network with time-varying delays and reaction-diffusion terms. Several previous results are improved and generalized, and three examples are given to show the effectiveness of the obtained results.  相似文献   

2.
This work investigates the improved stability conditions for linear systems with time-varying delays via various augmented approaches. Some augmented approaches are augmented Lyapunov-Krasovskii functionals, augmented zero equalities, and the augmented zero equality approach. At first, by constructing augmented Lyapunov-Krasovskii functionals including the state vectors which were not considered in the previous works and augmented zero equalities, a stability criterion is proposed in the forms of linear matrix inequalities. Through the proposed Lyapunov-Krasovskii functionals and an additional functional derived from the integral inequality, a slightly improved result is derived. The proposed results do not consider the increase in the computational complexity to achieve a larger delay bound. So, by applying the augmented zero equality approach, which is a method of grafting the proposed augmented zero equality proposed in Finsler Lemma, to the proposed result, an enhanced stability result was derived. Also, the computational complexity is reduced by appropriately adjusting any vector of the integral inequality utilized in the proposed criteria. By applying some numerical examples to the proposed conditions, the effectiveness and superiority of the results are confirmed.  相似文献   

3.
This paper investigates global asymptotical synchronization between fractional-order memristor-based neural networks (FMNNs) with multiple time-varying delays (MTDs) by pinning control. Two classes of coupling manners, static manner and dynamic manner, are introduced into the pinning controller respectively. For the case of static coupling, to make the controller exclude fraction, 1-norm Lyapunov function and fractional Halanay inequality in MTDs case are utilized for synthesis of controller and convergence analysis of synchronization error. For the case of dynamic coupling, a fractional differential inequality is proved and discussed in an elaborate way, and then global asymptotical synchronization is analyzed by means of Lyapunov-like function and the newly-proved inequality. Lastly, numerical simulations are carried out to show the practicability of the pinning controllers and the feasibility of the obtained synchronization criteria.  相似文献   

4.
This paper focuses on the problem of robust H∞ filter design for uncertain systems with time-varying state and distributed delays. System uncertainties are considered as norm-bounded time-varying parametric uncertainties. The delays are assumed to be time-varying delays being differentiable uniformly bounded with delay-derivative bounded by a constant, which may be greater than one. A new delay-derivative-dependent approach of filter design for the systems is proposed. A novel Lyapunov-Krasovskii functional (LKF) is employed, and a tighter upper bound of its derivative is obtained by employing an inequality and using free-weighting matrices technique, then the proposed result has advantages over some existing results, in that it has less conservatism and it enlarges the application scope. An improved sufficient condition for the existence of such a filter is established in terms of linear matrix inequality (LMI). Finally, illustrative examples are given to show the effectiveness and reduced conservatism of the proposed method.  相似文献   

5.
This paper addresses the delay-dependent stability problem of linear systems with interval time-varying delays. A generalized free-matrix-based inequality is proposed and employed to derive stability conditions, which are less conservative than the Bessel–Legendre inequality. An augmented Lyapunov–Krasovskii functional is tailored for the generalized free-matrix-based inequality. Then, some items in the Lyapunov–Krasovskii functionals are integrated so as to relax its positive definite condition, which provides a more accurate lower bound for the Lyapunov–Krasovskii functionals. Therefore, some less conservative stability criteria are presented. Two numerical examples illustrate the effectiveness of the method.  相似文献   

6.
This paper investigates the passivity and synchronization problems for two classes of multiple weighted coupled neural networks (MWCNNs) with or without time delays. Firstly, by utilizing an impulsive control strategy and some inequality techniques, several passivity criteria for MWCNNs with diverse dimensions of output and input are established. Then, based on the Lyapunov functional, some sufficient conditions to ensure the synchronization of MWCNNs via impulsive control are derived. In addition, combined with the comparison principle and the impulsive delay differential inequality, the global exponential synchronization of MWCNNs with time-varying delays is considered under impulsive control. Finally, two numerical examples illustrate the effectiveness of the obtained results.  相似文献   

7.
This paper is concerned with the stability analysis of linear systems with time-varying delays. First, by introducing the quadratic terms of time-varying delays and some integral vectors, a more suitable Lyapunov-Krasovskii functional (LKF) is constructed. Second, two new delay-dependent estimation methods are developed in the stability analysis of linear system with time-varying delays, which include a reciprocally convex matrix inequality and an integral inequality. More information about time-varying delays and more free matrices are introduced into the two estimation approaches, which play a key role for obtaining an accurate upper bound of the integral terms in time derivative of LKFs. Third, based on the novel LKFs and new estimation approaches, some less conservative criteria are derived in the form of linear matrix inequality (LMI). Finally, three numerical examples are applied to verify the advantages and effectiveness of the newly proposed methods.  相似文献   

8.
This paper gives some Razumikhin-type theorems on pth moment boundedness of stochastic functional differential equations with Markovian switching (SFDEwMS) by using Razumikhin technique and comparison principle. Some improved conditions on pth moment stability are also proposed. The main results of this paper allow the estimated upper bound of the diffusion operator associated with the underlying SFDEwMS of the Lyapunov function to have time-varying coefficients (the coefficients may even be sign-changing functions). Examples are provided to illustrate the effectiveness of the proposed results.  相似文献   

9.
In this paper, the problem of stability analysis for neural networks with time-varying delays is considered. By the use of a newly augmented Lyapunov functional and some novel techniques, sufficient conditions to guarantee the asymptotic stability of the concerned networks are established in terms of linear matrix inequalities (LMIs). Three numerical examples are given to show the improved stability region of the proposed works.  相似文献   

10.
This paper investigates the quasi-synchronization of reaction-diffusion neural networks with hybrid coupling and parameter mismatches via sampled-data control technology. First, the models of neural networks with switching parameter and fraction Brownian motion are given. As a result of parameter mismatches, synchronization is normally not possible to realize directly, then the improved Halanay’s inequality is introduced, which is an important lemma to prove that the considered networks realize quasi-synchronization. Furthermore, based on stochastic theory, Lyapunov function method and inequality techniques, some sufficient conditions are derived to guarantee the quasi-synchronization of hybrid coupled neural networks with reaction-diffusion terms driven by fractional Brownian motion. Finally, two simulation examples are given to prove the efficiency of the developed criteria.  相似文献   

11.
This paper investigates the stability robustness of linear output feedback systems with both time-varying structured (elemental) and unstructured (norm-bounded) parameter uncertainties as well as delayed perturbations by directly considering the mixed quadratically coupled uncertainties in the problem formulation. Based on the Lyapunov approach and some essential properties of matrix measures, two new sufficient conditions are proposed for ensuring that the linear output feedback systems with delayed perturbations as well as both time-varying structured and unstructured parameter uncertainties are asymptotically stable. The corresponding stable region, that is obtained by using the proposed sufficient conditions, in the parameter space is not necessarily symmetric with respect to the origin of the parameter space. Two numerical examples are given to illustrate the application of the presented sufficient conditions, and for the case of only considering both the delayed perturbations and time-varying structured parameter uncertainties, it can be shown that the results proposed in this paper are better than the existing one reported in the literature.  相似文献   

12.
This paper deals with the problems of non-fragile robust stochastic stabilization and robust H control for uncertain stochastic nonlinear time-delay systems. The parameter uncertainties are assumed to be time-varying norm-bounded appearing in both state and input matrices. The time-delay is unknown and time-varying with known bounds. The non-fragile robust stochastic stabilization problem is to design a memoryless non-fragile state feedback controller such that the closed-loop system is robustly stochastically stable for all admissible parameter uncertainties. The purpose of robust H control problem, in addition to robust stochastical stability requirement, is to reduce the effect of the disturbance input on the controlled output to a prescribed level. Using the Lyapunov functional method and free-weighting matrices, delay-dependent sufficient conditions for the solvability of these problems are established in terms of linear matrix inequality (LMI). Numerical example is provided to show the effectiveness of the proposed theoretical results.  相似文献   

13.
This paper deals with the problem of a new delay-dependent robust stability criteria for a class of mixed neutral and Lur’e systems. The system has time-varying uncertainties, interval time-varying delays and sector-bounded nonlinearity. The proposed method is based on Lyapunov method, a delay-dependent criterion for asymptotic stability is established in terms of linear matrix inequality (LMI). Numerical examples show the effectiveness of the proposed method.  相似文献   

14.
15.
This paper is concerned with the stability analysis of systems with two additive time-varying delay components in an improved delay interconnection Lyapunov–Krasovskii framework. At first, an augmented vector and some integral terms considering the additive delays information in a new way are introduced to the Lyapunov–Krasovskii functional (LKF), in which the information of the two upper bounds and the relationship between the two upper bounds and the upper bound of the total delay are both fully considered. Then, the obtained stability criterion shows advantage over the existing ones since not only an improved delay interconnection LKF is constructed but also some advanced techniques such as the free-matrix-based integral inequality and extended reciprocally convex matrix inequality are used to estimate the upper bound of the derivative of the proposed LKF. Finally, a numerical example is given to demonstrate the effectiveness and to show the superiority of the proposed method over existing results.  相似文献   

16.
In this paper, the exponential stabilization problem of uncertain T–S fuzzy systems with time-varying delay is emulated by fuzzy sampled-data H control. Firstly, a novel suitable Lyapunov–Krasovskii function is constructed, which contains all the information about the sampling pattern. Secondly, a less conservative result is achieved by using an extended Jensen inequality, and purposefully using a compact free weighting matrix. In addition, according to the linear matrix inequality (LMI), some sampled-data H exponential stability sufficient conditions and controller design of T–S fuzzy systems are established. Finally, effectiveness gives some illustrative examples may be used to display the value of the current proposed method as well as a significant improvement.  相似文献   

17.
In this paper, the global robust exponential stability problem for a class of uncertain inertial-type BAM neural networks with both time-varying delays is focused through Lagrange sense. The existence of time-varying delays in discrete and distributed terms is explored with the availability of lower and upper bounds of time-varying delays. Firstly, we transform the proposed inertial BAM neural networks to usual one. Secondly, by the aid of LKF, stability theory, integral inequality, some novel sufficient conditions for the global robust exponential stability of the addressed neural networks are obtained in terms of linear matrix inequalities, which can be easily tested in practice by utilizing LMI control toolbox in MATLAB software. Furthermore, many comparisons of proposed work are listed with some existing literatures to get less conservatism. Finally, two numerical examples are provided to demonstrate the advantages and superiority of our theoretical outcomes.  相似文献   

18.
This paper proposes Discrete Legendre Polynomial(DLP)-based inequality by solving the best weighted approximation of a given time series. The proposed inequality could significantly reduce the conservativeness in stability analysis of systems with constant or interval time-varying delays. Also former well-known integral inequities, such as discrete Jensen inequality, discrete Wirtinger-based inequality, are both included in the proposed DLP-based inequality as special cases with lower-order approximation. Stability criterion with less conservatism is then developed for both constant and time-varying delayed systems. Several numerical examples are given to demonstrate the effectiveness and benefit of the proposed method.  相似文献   

19.
This paper studies the fault-tolerant control (FTC) problem of a class of strict-feedback nonlinear systems. First, we put forward a key theorem which shows that type-B Nussbaum functions can be extended to the cases containing multiple Nussbaum functions in the same Lyapunov inequality under certain conditions. Then, by using the techniques of Nussbaum functions and adaptive control, a new fault-tolerant control scheme is proposed. Compared with the previous work, this paper considers unknown time-varying control coefficients and unknown time-varying fault coefficients of actuators. It is proved that all the signals of the closed-loop system are globally bounded and the tracking error converges to zero asymptotically. Finally, simulations are provided to verify the effectiveness of the proposed control scheme.  相似文献   

20.
This paper deals with the problem of delay-dependent stability analysis for neural networks with time-varying delays. First, by constructing an augmented Lyapunov–Krasovskii functional and utilizing a generalized free-weighting matrix integral inequality, an improved stability criterion for the concerned network is derived in terms of linear matrix inequalities. Second, by considering a marginal augmented vector and modifying a Lyapunov–Krasovsii functional, a further enhanced stability criterion is presented. Third, a less conservative stability condition in which a relaxed inequality related to activation functions is added is introduced. Finally, three numerical examples are included to illustrate the advantage and validity of the proposed criteria.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号