首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
2.
The issue of non-fragile controller’s designed with reachable set estimation and time-delay for multi-agent systems(MASs) is investigated in this paper. The information interaction among agents is governed by a set of switching sequence, which can be described by continue-time discrete state semi-Markov process. By tree-transformation, the MASs firstly converted into reduced-order system, and properly considered the instability of the parameters with the dynamic behavior of the controller, a non-fragile controller is designed to describe the system’s performance cope with the perturbation from the controller. The sufficient conditions are established in forms of a series of linear matrix inequalities which are based on Lyapunov-Krasovskii method, and the agent’s state of error systems is bounded by a finite closed set will be guaranteed. Finally, the availability of the derived theoretical results are verified by two numerical simulations.  相似文献   

3.
The stability and stabilization synthesis problems of the switched positive systems (SPSs) with external disturbances are studied in this paper. For the studied SPSs, a weighted mode-dependent average dwell time (WMDADT) switched strategy has been adopted to analyze the above-mentioned issue, based on which the deficiencies of the existing ADT and MDADT switching techniques can be overcomed. By using the adopted strategy, some improved stability conditions that have less conservativeness are presented for the systems under investigation. Moreover, based on the developed stability conditions, an efficient controller design method avoiding computational complexity and eliminating the rank requirement of the controller is presented. In the end, the effectiveness of the method is verified by two numerical examples.  相似文献   

4.
In this paper, the secure synchronization control problem of a class of complex time-delay dynamic networks (CTDDNs) under denial of service (DoS) attacks is studied. Based on the pinning control strategy, a non-fragile sampling controller is designed for a small number of nodes in the complex network. It can effectively solve the problem of limited communication resources and has good anti-interference performance. In order to resist the influence of DoS attacks, an improved comparator algorithm is designed to obtain the specific information of DoS attacks, including the upper and lower bounds of the DoS attacks duration, the DoS attacks frequency and the specific active/sleeping interval of DoS attacks. Based on Lyapunov stability theory and by designing the pinning non-fragile sampling controller, new security synchronization criteria are established for CTDDNs. Finally, two numerical examples are given to verify the validity of the theories.  相似文献   

5.
This paper considers the sliding mode control (SMC) problem of a class of uncertain Markovian jump systems, in which there exist randomly occurring parameter uncertainties and random gain variations in the controller. By introducing two independent random variables obeying Bernoulli distribution, the random characteristics of parameter uncertainties and controller gain variations are described. A mode-dependent sliding surface is constructed, and then, the non-fragile SMC scheme is synthesized such that the specified sliding surface is reached in finite time. Furthermore, the stochastic finite-time boundedness over both the reaching and sliding stages are ensured simultaneously under some sufficient conditions. Finally, the developed non-fragile SMC approach is verified by a practical example.  相似文献   

6.
This paper investigates the non-fragile control for positive Markovian jump systems both in continuous-time and discrete-time cases with actuator uncertainty. It is assumed that the coefficient matrices of the non-fragile controller is unknown and bounded. The state-feedback controller gain consists of nominal controller gain and gain perturbation. First, a set of state-feedback controllers for the considered system are designed by using a stochastic co-positive Lyapunov function integrated with linear programming approach. Under the designed controllers, the resulting closed-loop systems are positive and stochastically stable. Then, the proposed controller design approach is extended to discrete-time systems. Through comparisons, it is shown that existing results are special cases of the presented ones in the paper. Finally, two examples are given to illustrate the effectiveness of the proposed design.  相似文献   

7.
This paper is concerned with the non-fragile dynamic output feedback control for uncertain T–S fuzzy systems with time-varying delay and randomly occurring gain variations (ROGVs). Considering the imperfect premise matching that the T–S fuzzy model and the fuzzy controller do not have the same membership function, the purpose is to enhance the robustness of the system and the flexibility of the controller design. By adjusting the free weight matrix in the concept of extended dissipative, H, L2L, passive and (Q, S, R)-dissipative performance are solved in a unified framework. Stochastic phenomenon ROGVs is considered to describe the impact of the controller gain variations in the system, which is designed into two sequences of random variables and obey the Bernoulli distribution. Based on Lyapunov–Krasovskii functional (LKF) and integral inequality technique, some less conservative sufficient conditions are obtained to guarantee the close-loop system is asymptotically stable and extended dissipative. By solving the linear matrix inequalities (LMIs), a non-fragile dynamic output feedback controller can be developed. The advantage and effectiveness of the proposed design method can be illustrated by several numerical examples.  相似文献   

8.
This paper proposes a novel robust non-fragile proportional plus derivative state feedback (PDSF) control scheme for a class of uncertain nonlinear singular systems. The Takagi–Sugeno (T–S) fuzzy model is employed to represent the nonlinear singular system with parameter uncertainties appearing not only in distinct state matrices, but also in distinct derivative matrices. By using the free-weighting matrix technique, some sufficient conditions, which guarantee the resulting closed-loop system to be normal and stable (NS), are presented. With these conditions, the problems of non-fragile PDSF controllers design with additive and multiplicative uncertainties are respectively solved in terms of linear matrix inequalities (LMIs), which can be conveniently solved via the convex optimization technique. Finally, two examples are provided to illustrate the validity of the presented results.  相似文献   

9.
In this paper, an asynchronous sliding mode control design method based on the event-triggered strategy is proposed for the continuous stirred tank reactor (CSTR) under external disturbance. Firstly, with the purpose of appropriately modeling the multi-mode switching phenomenon in the CSTR caused by the fluctuation of temperature and concentration, the Markov process is applied. Secondly, the asynchronous switching characteristics are introduced to describe mismatch between the controller and the system, which caused by some factors such as signal transmission delay and packet dropout. In order to effectively estimate the system states that cannot be measured in real time, an observer based on the event-triggered strategy is proposed, which also can reduce the computational cost. In addition, a sliding mode controller is designed to ensure the dynamic stability and the sliding dynamics is reachable in a finite time. Finally, the effectiveness of the proposed method is verified by simulation experiments.  相似文献   

10.
This paper deals with the problem of non-fragile guaranteed cost control for a class of uncertain stochastic nonlinear time-delay systems. The parametric uncertainties are assumed to be time-varying and norm bounded. The time-delay factors are unknown and time-varying with known bounds. The aim of this paper is to design a memoryless non-fragile state feedback control law such that the closed-loop system is stochastically asymptotically stable in the mean square for all admissible parameter uncertainties and the closed-loop cost function value is not more than a specified upper bound. A new sufficient condition for the existence of such controllers is presented based on the linear matrix inequality (LMI) approach. Then, a convex optimization problem is formulated to select the optimal guaranteed cost controller which minimizes the upper bound of the closed-loop cost function. Numerical example is given to illustrate the effectiveness of the developed techniques.  相似文献   

11.
This paper is concerned with the problem of non-fragile guaranteed cost control (GCC) for networked nonlinear Markov jump systems subject to multiple cyber-attacks, which are characterized by Takagi–Sugeno (T–S) fuzzy model with time-varying delay. Specifically, a variety of cyber-attacks, including deception attacks and Denial-of-Service (DoS) attacks, are considered, which occur in the forward and feedback communication links, respectively. To achieve stochastic stability under guaranteed cost function (GCF), the paper proposes a Lyapunov–Krasovskii (L–K) function approach. The approach derives sufficient conditions for stochastic stability, and obtains non-fragile controller gains and the uniform upper bound of the GCF using linear matrix inequalities (LMIs) technique. Finally, the effectiveness of the proposed algorithm is evaluated by simulation experiment.  相似文献   

12.
This paper investigates the event-based asynchronous finite-time control for a class of cyber-physical switched systems under Denial-of-Service (DoS) attacks. Considering the attack’s characteristics, we put forward a novel attack-instant-constrained hybrid event-triggered scheme (HETS), which can not only contribute to reducing the network transmission overload, but also well descibe the network denial service behavior under attack interference. An asynchronous and ZOH-based controller is delicately constructed to mitigate the influence of DoS attacks and network-induced delay. A double-mode dependent Lyapunov–Krasovskii functional (LKF) is developed to set up some sufficient finite-time stability criteria for the concerned systems in view of the asynchronous switching effect. Finally, an application example of the urban railway system is offered to verify the proposed control algorithm.  相似文献   

13.
In this paper, a delayed feedback controller with the delay-dependent coefficient is introduced into a multiple delay phytoplankton-zooplankton system. For uncontrolled system, choosing delays as the bifurcation parameters, we prove that Hopf bifurcation can occur when the delays change and cross some values. Then, the delays are still chosen as the bifurcation parameters to research the dynamic behaviors of the controlled system. Under this control mechanism, the onset of Hopf bifurcation can be delayed by selecting the appropriate control parameters and the stability domain can be extended as feedback gain (the decay rate) decreases (increases), and the influence of the decay rate cannot be ignored. Furthermore, using the crossing curve methods, the stable changes of equilibrium in two delay plane can be obtained. Some numerical simulations are given to verify the correctness and validity of the delayed feedback controller in the bifurcation control.  相似文献   

14.
In this work, the problem of non-fragile sliding mode control is investigated for a class of uncertain switched systems with state unavailable. First, a non-fragile sliding mode observer is constructed to estimate the unmeasured state. And then, a state-estimate-based sliding mode controller is designed, in which a weighted sum approach of the input matrices is utilized to obtain a common sliding surface. It is shown that the reachability of the specified sliding surface can be ensured by the present sliding mode controller. Moreover, the exponential stability of the sliding mode dynamics is analyzed by adopting the average dwell time method. Finally, a numerical simulation is given to demonstrate the effectiveness of the results.  相似文献   

15.
This paper deals with the problem of two-dimensional (2D) system-based preview repetitive control (PRC) with equivalent-input-disturbance (EID) for uncertain continuous-time systems. First, to use the available values of the reference signal, we construct an equality constraint which includes the output of a basic repetitive controller, preview compensation and tracking error. Next, to compensate the unknown external disturbances, we incorporate an EID estimator into the PRC controller. Then, by employing the 2D system theory together with the linear matrix inequality (LMI) approach, we derive a sufficient condition to ensure the robust stability of the closed-loop system. By solving an LMI, the gains of the controller and state observer can be obtained. The results obtained in this paper generalize and include some results in the existings. literature. Finally, a numerical simulation demonstrates the effectiveness and superiority of the proposed method.  相似文献   

16.
This paper deals with the problems of non-fragile robust stochastic stabilization and robust H control for uncertain stochastic nonlinear time-delay systems. The parameter uncertainties are assumed to be time-varying norm-bounded appearing in both state and input matrices. The time-delay is unknown and time-varying with known bounds. The non-fragile robust stochastic stabilization problem is to design a memoryless non-fragile state feedback controller such that the closed-loop system is robustly stochastically stable for all admissible parameter uncertainties. The purpose of robust H control problem, in addition to robust stochastical stability requirement, is to reduce the effect of the disturbance input on the controlled output to a prescribed level. Using the Lyapunov functional method and free-weighting matrices, delay-dependent sufficient conditions for the solvability of these problems are established in terms of linear matrix inequality (LMI). Numerical example is provided to show the effectiveness of the proposed theoretical results.  相似文献   

17.
This paper is devoted to the non-fragile exponential synchronization problem of complex dynamical networks with time-varying coupling delays via sampled-data static output-feedback controller involving a constant signal transmission delay. The dynamics of the nodes contain s quadratically restricted nonlinearities, and the feedback gain is allowed to have norm-bounded time-varying uncertainty. The control design is based on a Lyapunov–Krasovskii functional, which consists of the sum of terms assigned to the individual nodes, i.e., it is constructed without merging the complex dynamical network’s nodes into a single large-scale system. In this way, the proposed design method has substantially reduced computational complexity and improved conservativeness, and guaranties non-fragile exponential stability of the error system. The sufficient stability condition is expressed in terms of linear matrix inequalities that are solvable by standard tools. The efficiency of the proposed method is illustrated by numerical examples.  相似文献   

18.
This paper investigates the stability and stabilizability of complex-valued memristive neural networks (CVMNNs) with random time-varying delays via non-fragile sampled-data control. Taking the influence of gain fluctuations into account, a non-fragile sampled-data controller is designed for CVMNNs. Compared with the existing control schemes, the one here is more applicable and can effectively save the communication resources. The assumption on activation functions of CVMNNs is relaxed by only needing the complex-valued activation functions satisfying the Lipschitz condition. By constructing a suitable Lyapunov–Krasovskii functional (LKF), new stability and stabilizability criteria are derived for CVMNNs. Different from the existing results with the maximum absolute values of memristive connection weights, our ones are based on the average values of the maximum and minimum of the memristive connection weights. Finally, numerical simulations are given to validate the effectiveness of the theoretical results.  相似文献   

19.
A novel distributed secondary voltage and frequency control strategy is proposed with the Zeno-free event-triggered scheme for an island alternating current (AC) microgrid under Denial-of-Service (DoS) attacks. A DoS attack compensation mechanism and an event-triggered mechanism on the basis of the checking scheme are developed. Then, a secure event-checked based event-triggered secondary control method is explored to guarantee the tracking performance of the microgrid under DoS attacks. Further, some linear matrix inequalities (LMIs)-based sufficient conditions are derived to design the controller. What’s more, the proposed asynchronous periodic triggering method can efficiently save communication resources and further reduce the update number of the controller. Finally, the efficiency of this work is verified by an islanded AC microgrid with comparisons.  相似文献   

20.
Sampled-data control as an effective mean of digital control has shown its prominent superiority in most practical industries and a zero-order holder (ZOH) is often introduced to maintain continuity of control in the field of sampled-data control system. However, it decreases the control accuracy in a certain extent since the state will be held invariably within each sampling interval. In order to improve the control accuracy, this paper proposes a dynamic model-based control strategy instead of ZOH for a class of switched sampled-data control systems. The model, which is built by abstracting the plant knowledge, is located at the controller side. The controller is set up based on the model state and it provides control input to the switched system. A fixed sampling period is adopted, under which a hybrid-dwell time switching condition is revealed by taking into account asynchronous switching. With reasonable design of switching condition, exponential stability of the closed-loop system can be guaranteed. Finally, advantages of our proposed method are presented through a numerical example by comparing with the result of ZOH-based control.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号