首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 23 毫秒
1.
对于实数集上的有理分函数y=(ax~2+bx+c)/(a'x~2+b'x+c') (1)其中分于与分母是互质的多项式(或单项式),且a与a'都不是零。关于求这类有理分函数的极值,书[1]中介绍了如下的判别式法:将(I)化归为x的二次分程:(a—a'y)x~2+(b—b'y)x+(c—c'y)=0若y有极值,x必须为实数,所以Δ=(b—b'y)~2—4(a—a'y)(c—c'y)≥0  相似文献   

2.
用方程的思想求分式函数的值域   总被引:1,自引:0,他引:1  
求形如下列的有理分式函数的值域 y=(a_1x~2+b_1x+c_1)/(a_2x~2+b_2x+c_2)(x∈D,D为定义域) (1)一般是把原函数式化成关于x的一元二次方程φ(y)x~2+ψ(y)x+g(y)=0 (*)(其中φ(y)、ψ(y)、g(y)是关于y的表达式),根据方程(*)的判别式△=ψ~2(y)-4φ(y)g(y)≥0求出y的取值范围,即得原函数的值域,这就是所谓的“判别式法”。大家知道,用上述方法求出的结果是不一定可靠的,可能会得出错误的结论。就方法本身而言,也使人疑虑:为什么能这样求?在  相似文献   

3.
画函数的图象、求函数的极值、判断函数的奇偶性、确定函数的单调区间等,一般都要以解析式y=f(x)为基础。因之,求出f(x)是必要的。下面介绍几种求法。一待定系数法例1.已知:f(x)为有理整函数且 f(2x)+f(3x+1)=13x~2+6x-1 求:f(x) 解:设f(x)=ax~2+bx+c 则f(2x)+f(3x+1) =13ax~2+(6a+5b)x+a+b+2c ∵ 13ax~2+(6a+5b)x+(a+b+2c) =13x~2+6x-1比较系数得则f(x)=x~2-1。二换元法例2若:f[f(x)]=(x+1)/(x+2)求:f(x)  相似文献   

4.
题 1  (邵剑波提供 ) 证明或否定设a >b >c>0 ,x21a2 +y21b2 +z21c2 =1 ,x22a2 +y22b2 +z22c2 =1 ,且 (x -x1+x22 ) 2 +( y -y1+y22 ) 2 +(z -z1+z22 ) 2 =14[(x1-x2 ) 2 +( y1-y2 ) 2 +(z1-z2 ) 2 ],则x2 +y2 +z2 ≤a2 +b2 +c2 。题 2  (吴善和提供 ) 证明或否定 : 若a、b、c分别是△ABC的三边长 ,实数m≥ 1 ,a′ =(bm+cm) 1m,b′ =(cm+am) 1m,c′=(am+bm) 1m,则以a′,b′ ,c′为三边可构成△A′B′C′ ,且△ABC与△A′B′C′的内切圆半径r与r′之间成立不等式r′≥ 2 1m·r。(注 每小题第一位解答正确者将获得奖金 5 0元 )有奖…  相似文献   

5.
在解或判别实系数一元二次方程(或可化为此类方程)时,根的判别式Δ=b2-4ac起着极大的作用.实系数二次函数y=ax2+bx+c(a≠0)有很多性质,其中当且仅当Δ=b2-4ac≤0时,y=ax2+bx+c保号.如果在实系数二次函数y=ax2+bx+c(a≠0)中,将系数a,b,c都改为对某些变量的实质函数,就可得到“广义判别式”的概念.即:设a=f(x,y),b=g(x,y),c=φ(x,y)都是以x,y为未知数的一个二元方程,则称Δ=b2-4ac为二元方程ax2+bx+c=0的“广义判别式”.1利用“广义判别式”可判断二元实函数系数方程根的情况实系数一元二次函数y=ax2+bx+c(a≠0)的保号性可以推广到关于x,y的二…  相似文献   

6.
二、判别式法与构造方程的技巧 如果函数y=f(x)可化为a(y)·x~2 b(y)·x c(y)=0 (a(y)≠0)的形式,同时可从△=b~2(y)-4a(y)·a(y)≥0求出y的变化范围。便可考虑用判别式法求此函数的最值。判别式法多用于求分式函数或无理函数的最值。运用此法必须全面慎重,特别是对于给定区间上的函数。当用判别式法求出y的变化范围后,应将端点值代回原函数进行检验,否则易产生“增值”、“误判”等情况。  相似文献   

7.
题目设二次函数y=(a+b)x~2+2cx-(a-b)。其中a、b、c分别为ΔABC的三边,当x=-(1/2)时,二次函数的最小值为-(a/2)。试判断ΔABC的形状。(1994年甘肃省中考试题) 解由题意可设二次函数的解析式为 y=(a+b)(x+1/2)~2-(-(a/2)) =(a+b)x~2+(a+b)x+(b-a/4), 又∵y=(a+b)x~2+2cx-(a-b), 比较系数,得{a+b=2c, {b-a/4=-(a-b).解得 a=b=c。  相似文献   

8.
判别式法是求函数值域的主要方法之一,方程思想在函数问题上的应用。它的理论依是:函数的定义域是非空数集,将原函数看作以y为参数的关于x的二次方程,若方程有数解,必须判别式Δ≥0,从而求得函数的值。因此,判别式法求函数值域的适用范围虽然泛,但又是有条件制约的。一、判别式法的广泛性⑴判别式法不只适用于形如y=x2+b1x+c1x2+b2x+c2(a12+a22≠0)的函数的值域问题。例1:求函数y=x-2-x√的值域。解:由已知得x-y=2-x√∵2-x≥0∴x≤2,又∵x-y≥0∴y≤2y=x-2-x√两边平方,整理得:x2-(2y-x+y2-2=0则解得y≤94又∵y≤2,故原函数的值域为狖y∈R…  相似文献   

9.
某些代数题借助几何方法来解,可以加强直观形象,有时甚至是很巧妙的.例如下面的这些问题,一些书刊中常把它作为用几何方法来解代数问题的范例: 例1:设两正变量x、y,满足方程x+y=c,试证函数z=(x~2+a~2)~(1/2)+(y~2+b~2)~(1/2)的最小值为(c~2+(a+b)~2)~(1/2),其中a、b、c是给定的正数。  相似文献   

10.
(一)求有理分式函数y=(a_1x~2 +b_1x+c_1)/(a_2x~2+b_2x+c_2) 型的值域时,如果分子、分母没有公因式时,就可变形式形为 (a_2yg-a_1)x~2+(b_2y-b_1)x+c_2y-c_1=0(*) 设a_2y-a_1≠0时,方程*的判别式Δ≥0的解集为M,还不能确认集合M就是原函数的值域,因为当y=a_1/a_2时,方程*的二次项系数为零,此时必须考察y=a_1/a_2时,方程*是否有实数解,如果没有实数解,则所求的值域就是M,如果有实数解;所求的值域为  相似文献   

11.
倒数方程是一种特殊的高次方程,它有四种基本类型,每种类型都有常规的解法。本文就从四个方面对这个问题作以综述。一、第一类型的偶次倒数方程的解法例1、解方程x~4+7x~3+14x~2+7x+1=0解:显然x=0不是方程的根,两边同除以x~2,得(x~2+(1/x~2))+7(x+(1/x))+14=0令x+(1/x)=y,测x~2+(1/x~2)=y~2-2测有y~2+7y+12=0(y+3)(y+4)=0∴y=3或y=4当x+(1/x)=-3时,x~2+3x+1=0  相似文献   

12.
介绍了如何用一元二次方程根的判别式确定形如:a(y)x~2 b(y)x c(y)=0的隐函数和y=φ(X)/(Ψ(X))分式函数的值域,并从理论上论证了这种方法的可靠性。  相似文献   

13.
一、纯粹利用判别式求函数y=ax~2+bx+c/mx~2+nx+l值域的可靠性。 [例1]求函数y=5/2x~2+5x+3的值域。解:把原式变形成2yx~2+5yx+3y-5=0 ①∵ x为实数:△=(5y)~2-4(2y)(3y-5)≥0 解得 y≥0或y≤-40 即所求值域为:{y∶y≥0}∪{y∶y≤-40}。但由原函数显然可知y≠0,所以上面求得的值域并不可靠。 [例2]求函数y=x~2-x-2/2x~2-6x+4的值域。解:把原式变形成 (2y-1)x~2+(1-6y)x+4y+2=0 ②∵ x为实数,∴△=(1-6y)~2-4(2y-1)(4y+2)=(2y-3)~2≥0 ∵所求值域为y∈R事实上,y=(x~2-x-2)/(2x~2-6x+4)=((x-2)(x+1))/(2(x-2)(x-1))  相似文献   

14.
对于形如y=(a1x2 b1x c1)/(a2x2 b2x c2)(a1,a2不同时为0)的函数,常常用根的判别式法求其值域。这是利用方程思想、等价转化思想将所给函数转化为关于x的一元二次方程,通过方程有根,判别式Δ≥0,从而求得原函数值域。根据函数定义域的不同,一般可分为2种类型。一、函数定义域为实数集R例1:求函数y=2xx22 24xx -37的值域解:∵分母x2 2x 3=(x 1)2 2≥2∴函数定义域为R将原函数变形为(2-y)x2 (4-2y)x 7-3y=0(1)当y=2时,方程(1)无解。当y≠2时,(在用判别式前要检查方程二次项系数),由于x∈R∴方程(1)有实数解。∴Δ=(4-2y)2-4(2-y)(7-3y)≥0…  相似文献   

15.
对于实数集上有理分函数:y=(ax~2+bx+c)/(a’x~2+b’x+c’)其中分子与分母是互质的多项(或单项式),且a和a’都不为零.关于求这类有理分函数的极值,书(1)中介绍了判别式法求得的y_(max)(极大值)和y(min)(极小值)它们可能都是函数(I)的极值,也可能有一个不是(I)的极值(参见文(2)).那么,利用判别式法求函数(I)的极值时,究竟何时正确?何时错误?其错误的原因在哪里?  相似文献   

16.
二次函数的一般形式是:y=ax~2+bx+c(a≠0),经配方,得y=a(x+(b/2a))~2+(4ac-b~2)/4a,设b/2a=m,(4ac-b~2)/4a=k 变式一:y=a(x+m)~2+k(a≠0) 二次函数图象的顶点坐标是(-m,k),对称轴方程是x=-m,即当x=-m时,函数y取得最大值(a>0)或最小值(a<0),“最”值是k。 若抛物线y=ax~2+bx+c(a≠0)与x轴有交点(x_1,0)、(x_2,0)(x_1=x_2时相切),即方  相似文献   

17.
用三角换元法证明不等式是基本方法,根据题意恰当地进行换元,则可使问题快速获解,达到事半功倍的效果.例1设点P(x,y)是圆x~2+(y-1)~2= 1上任意一点,若总有x+y+c≥0,试求c的取值范围.解因为点P(x,y)在圆x~2+(y-1)~2= 1上,故可设x=cosθ,y=1+sinθ,则x+y+c=cosθ+sinθ+1+c≥0恒成立,  相似文献   

18.
本文约定字母均表示正数。 (1)如果a+b=1, 则(a+1/a)~2+(b+1/b)~2≥ 25/2 ① (2)如果a+b+c=1, 则(a+1/a)~2+(b+1/b)~2+(c+1/c)~2 ≥100/3 ②一般地,如果sum from i=1 to n a_i=1, 则 sum from i=1 to n(a_i+1/a_i)~2≥(n~2+1)~2/n ③下面只证不等式②、③。引进三元函数 W=(x+1/a)~2+(y+1/b)~2+(z+1/c)~2,那么它的几何意义是动点P(x,y,z)到定点(-1/a,-1/b,-1/c)的距离的平方。  相似文献   

19.
本期问题初315已知方程a~3x~4+2a~2bx~3+(ab~2+2a~2c+ab)x~2+(2abc+b~2)x+ac~2+bc+c=0(a>0)有实根.  相似文献   

20.
众所周知,求分式函数y=ax~2+bx+c/lx~2+mx+n(a、l不同时为零)的值域,可用判别式法。但如果给自变量x以一定的限制,就不能用这一方法,一般须用导数来求解。本文介绍一种比较简便的初等方法。我们知道,关于一元二次方程的实根分布有以下结论:设f(x)=x~2+px+q,则 1.方程f(x)=0在区间(m,+∞)内有根的充要条件为(若把区间(m,+∞)改为[m,+∞),则把前一条件改为f(m)≤0)。 2.方程f(x)=0在区间(m,n)内有根的充要条件为  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号