首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Although the link between sagittal plane motion and exercise intensity has been highlighted, no study assessed if different workloads lead to changes in three-dimensional cycling kinematics. This study compared three-dimensional joint and segment kinematics between competitive and recreational road cyclists across different workloads. Twenty-four road male cyclists (12 competitive and 12 recreational) underwent an incremental workload test to determine aerobic peak power output. In a following session, cyclists performed four trials at sub-maximal workloads (65, 75, 85 and 95% of their aerobic peak power output) at 90?rpm of pedalling cadence. Mean hip adduction, thigh rotation, shank rotation, pelvis inclination (latero-lateral and anterior–posterior), spine inclination and rotation were computed at the power section of the crank cycle (12 o'clock to 6 o'clock crank positions) using three-dimensional kinematics. Greater lateral spine inclination (p?p?p?相似文献   

2.
Maximal strength training with a focus on maximal mobilization of force in the concentric phase improves endurance performance that employs a large muscle mass. However, this has not been studied during work with a small muscle mass, which does not challenge convective oxygen supply. We therefore randomized 23 adult females with no arm-training history to either one-arm maximal strength training or a control group. The training group performed five sets of five repetitions of dynamic arm curls against a near-maximal load, 3 days a week for 8 weeks. This training increased maximal strength by 75% and improved rate of force development during both strength and endurance exercise, suggesting that each arm curl became more efficient. This coincided with a 17-18% reduction in oxygen cost at standardized submaximal workloads (work economy), and a 21% higher peak oxygen uptake and 30% higher peak load during maximal arm endurance exercise. Blood flow assessed by Doppler ultrasound in the axillary artery supplying the working biceps brachii and brachialis muscles could not explain the training-induced adaptations. These data suggest that maximal strength training improved work economy and endurance performance in the skeletal muscle, and that these effects are independent of convective oxygen supply.  相似文献   

3.
Bioelectrical impedance vector-analysis (BIVA) describes cell-mass, cell function and hydration status of an individual or a group. The goal of the present investigation was to provide bioelectrical impedance data for 525 male road cyclists (155 professionals, 79 elite, 59 elite-youth, and 232 amateurs) at the time of their optimal performance level. Data were plotted on the resistance-reactance (R-Xc) graph to characterize cyclists group vectors using BIVA. Compared to the general male population, the mean vector position of the road cyclists indicates a higher body cell mass (BCM) and phase angle (p<0.001). The vector position of the high-performance, compared to the amateur cyclists showed similar patterns with higher BCM and phase angles and higher reactance values for the high-performance athletes (p<0.001). The bio-impedance data were used to calculate the 50%, 75%, and 95% tolerance ellipses of each group of cyclists. The characteristic vector positions of the road cyclists indicate normal hydration and greater muscle mass and function of the high-performance cyclists compared to amateur cyclists and the normal population. The cyclists specific tolerance ellipses, particularly the high-performance cyclists might be used for classifying a cyclist according to the individual vector position and to define target vector regions for lower level cyclists.  相似文献   

4.
The purpose of the present study was to assess fitness and running performance in a group of recreational runners (men, n = 18; women, n = 13). 'Fitness' was determined on the basis of their physiological and metabolic responses during maximal and submaximal exercise. There were strong correlations between VO2 max and treadmill running speeds equivalent to blood lactate concentrations of 2 mmol l-1 (V-2 mM) or 4 mmol l-1 (V-4 mM), 'relative running economy' and 5 km times (r = -0.84), but modest and non-significant correlations between muscle fibre composition and running performance. The results of the submaximal exercise tests suggested that the female runners were as well trained as the male runners. However, the men still recorded faster 5 km times (19.20 +/- 1.97 min vs 20.97 +/- 1.70 min; P less than 0.05). Therefore the of the present study suggest that the faster performance times recorded by the men were best explained by their higher VO2 max values, rather than their training status per se.  相似文献   

5.
Free radical production increases during exercise and oxidative damage occurs in several tissues. We examined the effects of three different exercise tests on the pattern of change of erythrocyte enzyme antioxidant activities. The tests were a short maximal exercise test, a submaximal prolonged exercise test and a cycling stage during competition. The participants were amateur and professional cyclists with different training statuses and different basal erythrocyte antioxidant enzyme activities. The maximal test produced no changes in the erythrocyte antioxidant enzyme activities of amateur sportsmen. The submaximal test, performed at 80% of maximal oxygen uptake, decreased erythrocyte catalase (12%), glutathione peroxidase determined with H2O2 (14%) and glutathione reductase (16%); superoxide dismutase activity increased by about 25%. The cycling stage performed by professional cyclists increased erythrocyte catalase (29%) and glutathione reductase (10%) activities. The in vivo changes in glutathione reductase activity were confirmed by in vitro measurements: hydrogen peroxide decreased and the presence of catalase increased the activity of this enzyme. In conclusion, we suggest that the different erythrocyte antioxidant enzyme responses to diverse exercise tests can be explained by the effects of hydrogen peroxide and the superoxide anion on the antioxidant enzyme activities in erythrocytes.  相似文献   

6.
ABSTRACT

Elite cyclists have often a limited period of time available during their short preparation phase to focus on development of maximal strength; therefore, the purpose of the present study was to investigate the effect of 10-week heavy strength training on lean lower-body mass, leg strength, determinants of cycling performance and cycling performance in elite cyclists. Twelve cyclists performed heavy strength training and normal endurance training (E&S) while 8 other cyclists performed normal endurance training only (E). Following the intervention period E&S had a larger increase in maximal isometric half squat, mean power output during a 30-s Wingate sprint (P < 0.05) and a tendency towards larger improvement in power output at 4 mmol ? L?1 [la?] than E (P = 0.068). There were no significant difference between E&S and E in changes in 40-min all-out trial (4 ± 6% vs. ?1 ± 6%, respectively, P = 0.13). These beneficial effects may encourage elite cyclists to perform heavy strength training and the short period of only 10 weeks should make it executable even in the compressed training and competition schedule of elite cyclists.  相似文献   

7.
The relationships between muscle fibre characteristics and the physical performance capacity of trained athletic boys (aged 11-13 years) were studied over 2 days. The subjects were divided into two groups according to muscle fibre distribution. The 'fast' group (FG) comprised 10 subjects (sprinters, weightlifters, tennis players) with more than 50% fast-twitch fibres (type II), and the 'slow' group (SG) comprised 8 subjects (endurance runners, tennis players, one weightlifter) with more than 50% slow-twitch fibres (type I) in their vastus lateralis muscle. The 'fast' group had 59.2 +/- 6.3% and the 'slow' group had 39.4 +/- 9.8% type II fibres. Other clear differences (P less than 0.05-0.01) between the groups were observed as regards reaction time, rate of force development and rise of the body's centre of gravity in the squatting jump. For these variables, the 'fast' group was superior to the 'slow' group. Muscle fibre distribution (% type II) correlated (P less than 0.05-0.01) negatively with reaction time. Muscle fibre area (% type II) correlated negatively with reaction time (P less than 0.05-0.001) and positively with chronological age (P less than 0.05) height (P less than 0.05), mass (P less than 0.001), serum testosterone (P less than 0.05), force production (P less than 0.05-0.01) and blood lactate (P less than 0.05) in the 60-s maximal anaerobic test. There were no significant correlations between muscle fibre characteristics and maximal oxygen uptake. The present study assumes that heredity partly affects the selection of sporting event. Growth, development and training are associated with muscle fibre area, which affects the physical performance capacity of the neuromuscular system in trained young boys.  相似文献   

8.
In this study, we evaluated the effects of a novel pedal design, characterized by a downward and forward shift of the cleat fixing platform relative to the pedal axle, on maximal power output and mechanical efficiency in 22 well-trained cyclists. Maximal power output was measured during a series of short (5-s) intermittent sprints on an isokinetic cycle ergometer at cadences from 40 to 120 rev min(-1). Mechanical efficiency was evaluated during a submaximal incremental exercise test on a bicycle ergometer using continuous VO(2) and VCO(2) measurement. Similar tests with conventional pedals and the novel pedals, which were mounted on the individual racing bike of the participant, were randomized. Maximal power was greater with novel pedals than with conventional pedals (between 6.0%, s(x) = 1.5 at 40 rev min(-1) and 1.8%, s(x) = 0.7 at 120 rev min(-1); P = 0.01). Torque production between crank angles of 60 degrees and 150 degrees was higher with novel pedals than with conventional pedals (P = 0.004). The novel pedal design did not affect whole-body VO(2) or VCO(2). Mechanical efficiency was greater with novel pedals than with conventional pedals (27.2%, s(x) = 0.9 and 25.1%, s(x) = 0.9% respectively; P = 0.047; effect size = 0.9). In conclusion, the novel pedals can increase maximal power output and mechanical efficiency in well-trained cyclists.  相似文献   

9.
Free radical production increases during exercise and oxidative damage occurs in several tissues. We examined the effects of three different exercise tests on the pattern of change of erythrocyte enzyme antioxidant activities. The tests were a short maximal exercise test, a submaximal prolonged exercise test and a cycling stage during competition. The participants were amateur and professional cyclists with different training statuses and different basal erythrocyte antioxidant enzyme activities. The maximal test produced no changes in the erythrocyte antioxidant enzyme activities of amateur sportsmen. The submaximal test, performed at 80% of maximal oxygen uptake, decreased erythrocyte catalase (12%), glutathione peroxidase determined with H2O2 (14%) and glutathione reductase (16%); superoxide dismutase activity increased by about 25%. The cycling stage performed by professional cyclists increased erythrocyte catalase (29%) and glutathione reductase (10%) activities. The in vivo changes in glutathione reductase activity were confirmed by in vitro measurements: hydrogen peroxide decreased and the presence of catalase increased the activity of this enzyme. In conclusion, we suggest that the different erythrocyte antioxidant enzyme responses to diverse exercise tests can be explained by the effects of hydrogen peroxide and the superoxide anion on the antioxidant enzyme activities in erythrocytes.  相似文献   

10.
The aims of this study were to describe normative values and seasonal variation of body composition in female cyclists comparing female road and track endurance cyclists, and to validate the use of anthropometry to monitor lean mass changes. Anthropometric profiles (seven site skinfolds) were measured over 16 years from 126 female cyclists. Lean mass index (LMI) was calculated as body weight?×?skinfolds?x. The exponent (x) was calculated as the slope of the natural logarithm of body weight and skinfolds. Percentage changes in LMI were compared to lean mass changes measured using dual-energy X-ray absorptiometry (DXA) in a subset of 25 road cyclists. Compared to sub-elite and elite cyclists, world class cyclists were (mean [95% CI]) 1.18?kg [0.46, 1.90] and 0.60?kg [0.05, 1.15] lighter and had skinfolds that were 7.4?mm [3.8, 11.0] and 4.6?mm [1.8, 7.4] lower, respectively. Body weight (0.41?kg [0.04, 0.77]) and skinfolds (4.0?mm [2.1, 6.0]) were higher in the off-season compared to the early-season. World class female road cyclists had lower body weight (6.04?kg [2.73, 9.35]) and skinfolds (11.5?mm [1.1, 21.9]) than track endurance cyclists. LMI (mean exponent 0.15 [0.13, 0.18]) explained 87% of the variance in DXA lean mass. In conclusion, higher performing female cyclists were lighter and leaner than their less successful peers, road cyclists were lighter and leaner than track endurance cyclists, and weight and skinfolds were lowest early in the season. LMI appears to be a reasonably valid tool for monitoring lean mass changes.  相似文献   

11.
Physiological correlates to off-road cycling performance   总被引:1,自引:1,他引:0  
The aim of this study was to examine the relationships between maximal and submaximal tests for aerobic fitness and performance in an off-road cross-country circuit race. Thirteen competitive off-road male cyclists participated in the study. Peak oxygen uptake (VO2peak), peak power output, and lactate thresholds corresponding to 1 mmol x l(-1) above baseline (lactate threshold) and to 4 mmol x l(-1) (onset of blood lactate accumulation) were measured during an incremental cycling test. Race time and final ranking within the same group of cyclists were determined during a cross-country off-road competition. All correlations between the measured parameters of aerobic fitness and off-road cycling performance were significant, particularly between race time and physiological parameters scaled to body mass0.79 (r = -0.68 to -0.94; P < 0.05) and between final ranking and physiological parameters expressed relative to body mass0.79 (r = -0.81 to - 0.96; P < 0.001). Moreover, there was a large difference (effect sizes = 1.12-1.70) in all measured parameters of aerobic fitness between the group of six cyclists with a race time above the median and the group of six cyclists with a race time below the median (P < 0.05). In conclusion, the results of this study provide empirical support to the widespread use of these maximal (VO2peak, peak power output) and submaximal (lactate thresholds) parameters of aerobic fitness in the physiological assessments of off-road cyclists. Furthermore, our results suggest body size should be taken into account when evaluating such athletes.  相似文献   

12.
A 30-s 'all-out' power protocol was studied in four groups of racing cyclists including internationals (n = 8), Category 1 (n = 10), Category 2 (n = 15) and Category 3 (n = 11). Following warm-up each subject completed five trials interspersed by 3 min of low intensity exercise on an ergowheel racing cycle ergometry system at a power output of 15 W kg-1 body weight, generated at 130 rev min-1. Temporal indices of performance included delay time (DT) to achieve the power criterion, total time (TT) of the maintenance of the power criterion and the ratio of TT/DT. 'Explosive' leg strength was assessed from a vertical jump. The results indicated that international and Category 1 cyclists had lower DT (2.2 +/- 0.1 s and 2.1 +/- 0.0 s, respectively; P less than 0.05), higher TT (28.1 +/- 0.7 s and 27.0 +/- 0.7 s, respectively; P less than 0.05) and elevated TT/DT (12.8 and 12.9, respectively; P less than 0.01). 'Explosive' leg strength was also higher (P less than 0.05) in the internationals than in the other groups of cyclists. The protocol provides a sport-related method for the assessment of short term endurance performance ability in racing cyclists which may be of value in identifying the anaerobic capability of individual cyclists.  相似文献   

13.
Endurance running performance in athletes with asthma   总被引:1,自引:0,他引:1  
Laboratory assessment was made during maximal and submaximal exercise on 16 endurance trained male runners with asthma (aged 35 +/- 9 years) (mean +/- S.D.). Eleven of these asthmatic athletes had recent performance times over a half-marathon, which were examined in light of the results from the laboratory tests. The maximum oxygen uptake (VO2max) of the group was 61.8 +/- 6.3 ml kg-1 min-1 and the maximum ventilation (VEmax) was 138.7 +/- 24.7 l min-1. These maximum cardio-respiratory responses to exercise were positively correlated to the degree of airflow obstruction, defined as the forced expiratory volume in 1 s (expressed as a percentage of predicted normal). The half-marathon performance times of 11 of the athletes ranged from those of recreational to elite runners (82.4 +/- 8.8 min, range 69-94). Race pace was correlated with VO2max (r = 0.863, P less than 0.01) but the highest correlation was with the running velocity at a blood lactate concentration of 2 mmol l-1 (r = 0.971, P less than 0.01). The asthmatic athletes utilized 82 +/- 4% VO2max during the half-marathon, which was correlated with the %VO2max at 2 mmol l-1 blood lactate (r = 0.817, P less than 0.01). The results of this study suggest that athletes with mild to moderate asthma can possess high VO2max values and can develop a high degree of endurance fitness, as defined by their ability to sustain a high percentage of VO2max over an endurance race. In athletes with more severe airflow obstruction, the maximum ventilation rate may be reduced and so VO2max may be impaired. The athletes in the present study have adapted to this limitation by being able to sustain a higher %VO2max before the accumulation of blood lactate, which is an advantage during an endurance race. Therefore, with appropriate training and medication, asthmatics can successfully participate in endurance running at a competitive level.  相似文献   

14.
The aims of this study were to compare the physiological and anthropometric characteristics of successful mountain bikers and professional road cyclists and to re-examine the power-to-weight characteristics of internationally competitive mountain bikers. Internationally competitive cyclists (seven mountain bikers and seven road cyclists) completed the following tests: anthropometric measurements, an incremental cycle ergometer test and a 30 min laboratory time-trial. The mountain bikers were lighter (65.3+/-6.5 vs 74.7+/-3.8 kg, P= 0.01; mean +/- s) and leaner than the road cyclists (sum of seven skinfolds: 33.9+/-5.7 vs 44.5+/-10.8 mm, P = 0.04). The mountain bikers produced higher power outputs relative to body mass at maximal exercise (6.3+/-0.5 vs 5.8+/-0.3 W x kg(-1), P= 0.03), at the lactate threshold (5.2+/-0.6 vs 4.7+/-0.3 W x kg(-1), P= 0.048) and during the 30 min time-trial (5.5+/-0.5 vs 4.9+/-0.3 W x kg(-1), P = 0.02). Similarly, peak oxygen uptake relative tobody mass was higher in the mountain bikers (78.3+/-4.4 vs 73.0+/-3.4 ml x kg(-1) x min(-1), P = 0.03). The results indicate that high power-to-weight characteristics are important for success in mountain biking. The mountain bikers possessed similar anthropometric and physiological characteristics to previously studied road cycling uphill specialists.  相似文献   

15.
The aims of this study were to compare the physiological and anthropometric characteristics of successful mountain bikers and professional road cyclists and to re-examine the power-to-weight characteristics of internationally competitive mountain bikers. Internationally competitive cyclists (seven mountain bikers and seven road cyclists) completed the following tests: anthropometric measurements, an incremental cycle ergometer test and a 30 min laboratory time-trial. The mountain bikers were lighter (65.3 - 6.5 vs 74.7 - 3.8 kg, P = 0.01; mean - s ) and leaner than the road cyclists (sum of seven skinfolds: 33.9 - 5.7 vs 44.5 - 10.8 mm, P = 0.04). The mountain bikers produced higher power outputs relative to body mass at maximal exercise (6.3 - 0.5 vs 5.8 - 0.3 W·kg -1 , P = 0.03), at the lactate threshold (5.2 - 0.6 vs 4.7 - 0.3 W·kg -1 , P = 0.048) and during the 30 min time-trial (5.5 - 0.5 vs 4.9 - 0.3 W·kg -1 , P = 0.02). Similarly, peak oxygen uptake relative to body mass was higher in the mountain bikers (78.3 - 4.4 vs 73.0 - 3.4 ml·kg -1 ·min -1 , P = 0.03). The results indicate that high power-to-weight characteristics are important for success in mountain biking. The mountain bikers possessed similar anthropometric and physiological characteristics to previously studied road cycling uphill specialists.  相似文献   

16.
Low magnitude bone-loading sports may benefit bone structure and strength in the exercised limbs. This study compared peripheral quantitative computed tomography measures of radial and tibial diaphyseal strength (strength–strain index, SSI), structure (total area (ToA) and cortical area (CoA), density (CoD) and thickness (CT), and circumferences), muscle cross-sectional area (MCSA) and strength (one-repetition maximum, 1-RM) in male endurance athletes taking part in (i) non-weight-bearing and non-impact sports: swimmers (SWIM, n?=?13) and road cyclists (RC, n?=?10), (ii) non-weight-bearing, impact sport: mountain bikers (MB, n?=?10), (iii) weight bearing and impact sport: runners (RUN, n?=?9). All athlete groups were also compared to sedentary controls (CON, n?=?10). Arm MCSA, 1-RM and radial bone size and strength tended to be greater in SWIM than CON and/or RC (ToA, %difference ±?95%CI, SWIM-CON: 14.6%?±?12.7%; SWIM-RC: 12.9%?±?10.7%) but not different to MB and RUN. RUN had bigger tibial CoA than CON, SWIM and RC (CoA, RUN-CON: 12.1%?±?10.7%; RUN-SWIM: 10.9%?±?9.4%; RUN-RC: 15.8%?±?9.5%) without marked changes in tibial strength indices, lower-limb MCSA or 1-RM. Both MB and RC failed to display any difference in tibial indices, lower-limb MCSA and 1-RM compared to CON. In swimmers, the bone structure and strength of the primary exercised limbs, the arms, is greater than controls and road cyclists. Conversely, although runners experience impact and weight-bearing loading, tibial structure is greater without a substantial difference in tibial strength compared to controls and non-impact sports. Failure to observe a difference in tibial indices in MB and RC compared to controls is unexpected.  相似文献   

17.
不同无氧阈测定方法比较及其在中长跑训练中的应用   总被引:1,自引:0,他引:1  
本文比较了各种无氧阈测值:通气阈(VT),4mmol乳酸阈(LT_4),血乳酸开始升高(LT_(OBLA)),个体无氧阈(IAT),血乳酸最大稳态(maxLass)和心率拐点(HRd)。发现各测值之间高度相关,但是maxLass与其它测值之间存在不同程度的差异,为AT在训练中的应用提供了有价值的生理依据。继而探讨了LT_4百分比强度对控制中长跑训练,改善运动员肌肉氧化代射能力,提高运动成绩的意义。  相似文献   

18.
Abstract

Muscle fiber type composition in the vastus lateralis and knee extension isometric strength fatigue patterns were assessed in eight endurance-trained and eight power-trained males. Two different 25-trial isometric contraction exercise regimens were administered: a 10-second contraction, 5-second intertrial rest condition designed to induce a fast rate of fatigue and a 10-second contraction, 20-second intertrial rest condition designed to induce a slower rate of fatigue. The power group fatigued almost four times faster than the endurance group in the 10:5 exercise condition. In the 10:20 exercise condition, the endurance group showed no fatigue pattern while the power group had a significant strength decrement of 32%. In both exercise conditions, the power group exhibited more complex fatigue patterns in terms of statistically significant trend components. Maximum isometric strength correlated positively with slow twitch (ST) percent number in power (r = .80) and endurance (r = .48) groups, but negatively with linear trend coefficients in endurance (r = -.62) and power (r = -.80) groups. Maximum isometric strength also correlated higher with fatigue curve trend coefficients than did muscle fiber type composition. Thus, a faster rate of fatigue was associated with higher maximum isometric strength and with higher ST percent number and area. Since maximum isometric strength correlated with body weight (r = .86 for groups combined), both maximum isometric strength and muscle mass appear to be more important determinants of knee extension isometric strength fatigue patterns than muscle fiber type composition.  相似文献   

19.
The purpose of this study was to assess the effects of heavy resistance, explosive resistance, and muscle endurance training on neuromuscular, endurance, and high-intensity running performance in recreational endurance runners. Twenty-seven male runners were divided into one of three groups: heavy resistance, explosive resistance or muscle endurance training. After 6 weeks of preparatory training, the groups underwent an 8-week resistance training programme as a supplement to endurance training. Before and after the 8-week training period, maximal strength (one-repetition maximum), electromyographic activity of the leg extensors, countermovement jump height, maximal speed in the maximal anaerobic running test, maximal endurance performance, maximal oxygen uptake ([V·]O(?max)), and running economy were assessed. Maximal strength improved in the heavy (P = 0.034, effect size ES = 0.38) and explosive resistance training groups (P = 0.003, ES = 0.67) with increases in leg muscle activation (heavy: P = 0.032, ES = 0.38; explosive: P = 0.002, ES = 0.77). Only the heavy resistance training group improved maximal running speed in the maximal anaerobic running test (P = 0.012, ES = 0.52) and jump height (P = 0.006, ES = 0.59). Maximal endurance running performance was improved in all groups (heavy: P = 0.005, ES = 0.56; explosive: P = 0.034, ES = 0.39; muscle endurance: P = 0.001, ES = 0.94), with small though not statistically significant improvements in [V·]O(?max) (heavy: ES = 0.08; explosive: ES = 0.29; muscle endurance: ES = 0.65) and running economy (ES in all groups < 0.08). All three modes of strength training used concurrently with endurance training were effective in improving treadmill running endurance performance. However, both heavy and explosive strength training were beneficial in improving neuromuscular characteristics, and heavy resistance training in particular contributed to improvements in high-intensity running characteristics. Thus, endurance runners should include heavy resistance training in their training programmes to enhance endurance performance, such as improving sprinting ability at the end of a race.  相似文献   

20.
It is not known whether the seated or standing position favours performance during intensive bouts of uphill cycling. The following hypotheses were therefore tested: (1) the standing position results in better performance at a high power output, while (2) the seated position is best at a moderate power output. We also assessed the seated-standing transition intensity, above which seated cycling should be superseded by standing cycling for maximization of performance. Ten male cyclists (mean age 27 years, s = 3; height 1.82 m, s = 0.07; body mass 75.2 kg, s = 7.0; VO2max 70.0 ml.kg(-1).min(-1), s = 5.2) performed seated and standing treadmill cycling to exhaustion at 10% grade and at four power outputs ranging from 86% to 165% of their power output at maximal oxygen uptake (Wmax). Power output at maximal oxygen uptake was obtained during determination of VO2max. There was no difference in time to exhaustion between the two cycling positions at 86% of Wmax (P = 0.29). All participants performed best at the highest power output (165% of Wmax) when standing (P = 0.002). An overall seated-standing transition intensity of 94% of Wmax was identified. Thus, in general, cyclists may choose either the standing or seated position for maximization of performance at a submaximal intensity of 86% of Wmax, while the standing position should be used at intensities above 94% of Wmax and approaching 165% of Wmax.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号