首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
若x_1、x_2是方程ax~2+bx+c=0(a≠0)的两根,则ax_1~2+bx_1+c=0和ax_2~2+bx_2十c=0.这种把根代入原方程,即让根"回娘家"的方法在解题中有着独特的作用.  相似文献   

2.
我们知道:若x1是方程ax2+bx+c=0(a≠0)的根,则ax12+bx1+c=0,反之若ax12+bx1+c=0(a≠0),则x1是方程ax2+bx+c=0的一个根,活用方程根的定义的正、反两方面知识,进行解题是一种重要的方法,现举例说明·一、正用方程根的定义例1(“祖冲之杯”数学邀请赛题)已知关于x的方程ax2+bx+c=0(a≠0)的两根之和是m,两根平方和是n,求3an2+c3bm的值·解:设方程的二根是α、β,则aα2+bα+c=0,aβ2+bβ+c=0·两式相加,得a(α2+β2)+b(α+β)+2c=0,即an+bm+2c=0,所以2c=-(an+bm),所以3an2+c3bm=-31·例2(河北省初中数学竞赛题)求作一元二次方程,使它的根是方程x…  相似文献   

3.
大家知道,使方程左、右两边的值相等的未知数的值,叫做方程的根.根据根的定义,如果x_0是一元二次方程ax~2+bx+c=0的根,那么ax_0~2+bx_0+c=0;反之,如果ax_0~2+bx_0+c=0,那么必是方程ax~2+bx+c=0的一个根  相似文献   

4.
一元二次方程ax2+bx+c=0(a≠0),当有一个根是“1”时,根据方程根的定义得a+b+c=0,反之,如果a+b+c=0时,方程的根又分别是什么呢?证明:∵a+b+c=0∴b=-a-c则ax2+bx+c=0变为ax2+(-a-c)x+c=0可分解为(ax-c)(x-1)=0解得:x1=1x2=ac也就是方程ax2+bx+c=0(a≠0)中,当a+b+c=0时,有一个根是1,另一个根是c/a,借这个特殊性质来巧解题。1、巧求一元二次方程的两个根例1解关于x的方程:mx2-(m-n)x-n=0(m≠0)解:∵m-(m-n)-n=0∴x1=1x2=-(mn).2、巧求代数式的值已知:一元二次方程(ab-2b)x2+2(b-a)x+2a-ab=0有两个相等的实数根,求1a+1b的值。解:方程(ab-2b)x2+2…  相似文献   

5.
一元二次方程ax2 +bx+c=0(a≠θ)的系数和a+b+c=0,则x=1满足方程x2+bx+c=0,即x=1是该方程的一个根.反过来,x=1是一元二次方程ax2+bx+c=0(a≠0)的一个根,则ab+c=0. 运用这个结论可解决不少的问题.请看: 例1 解方程:4x2-5x+ 1=0. 分析与解:因为4+(-5)+1=0,所以x1=1是方程的一个根.设另一根为x2,由根与系数的关系,得1×x2=1/4,即x2=1/4,所以方程的解是x1=1,xx=1/4. 温馨小提示:已知一元二次方程的一个根,运用根与系数的关系可简捷地求出另一个根.  相似文献   

6.
在解或判别实系数一元二次方程(或可化为此类方程)时,根的判别式Δ=b2-4ac起着极大的作用.实系数二次函数y=ax2+bx+c(a≠0)有很多性质,其中当且仅当Δ=b2-4ac≤0时,y=ax2+bx+c保号.如果在实系数二次函数y=ax2+bx+c(a≠0)中,将系数a,b,c都改为对某些变量的实质函数,就可得到“广义判别式”的概念.即:设a=f(x,y),b=g(x,y),c=φ(x,y)都是以x,y为未知数的一个二元方程,则称Δ=b2-4ac为二元方程ax2+bx+c=0的“广义判别式”.1利用“广义判别式”可判断二元实函数系数方程根的情况实系数一元二次函数y=ax2+bx+c(a≠0)的保号性可以推广到关于x,y的二…  相似文献   

7.
使方程左右两边相等的未知数的值叫做方程的解,只含一个未知数的方程的解也叫做方程的根.由方程根的定义可知,若a是方程ax^2+bx+c=0(a≠0)的根,则必有aa^2+ba+c=0;反之,若aa^2+ba+c=0,则a必是方程ax^2+bx+c=0的根,下面结合实例说明一元二次方程的根的定义在解(证)题中的应用,供初三同学学习时参考。  相似文献   

8.
若x1、x2是方程ax2+bx+c=O(a≠O)的两根,则ax_(1)~2+bx1+c=0和ax_(2)~2+bx2+c=0.方程与方程根的这一关系在解题中有着广泛的应用. 例1(1994年河南省中考题)以x2-3x-1=0的两个根的平方为根的一元二次方程是( ). (A)y2-11y+1=0 (B)y2+y-11=0  相似文献   

9.
一元二次方程ax2+bx+c=0(a≠0)根的判别式Δ=b2-4ac是初中数学的一个重要知识点,本文结合例题,说说应用一元二次方程根的判别式(以下简称判别式)解题时需注意的几点.一、使用判别式的条件方程ax2+bx+c=0(a≠0)的a≠0是使用判别式的前提条件.例1 关于x的一元二次方程k2x2-(2k+1)x+1=0有两个实数根,求k的取值范围.分析:根据题设条件,可知Δ=[-(2k+1)]2-4k2≥0且k2≠0,解得k≥-14且k≠0. 二、方程有两个实数根与方程有实数根区别方程ax2+bx+c=0有两个实数根,则必有≠0;但方程ax2+bx+c=0有实数根,则它可有两个实数根,也可能有一个实数根,…  相似文献   

10.
一、基础知识“若实数x1、x2是方程ax2+bx+c=0(a≠0)的两个根,则x1+x2=-b/a,x1x2=c/a”,这一关系称之为韦达定理;其逆定理是:“若实数x1,x2满足x1+x2=-b/a,x1x2=c/a,则x1,x2是方程ax2+bx+c=a(a≠0)的两个根”,韦达定理及其逆定理在各类数学竞赛中具有广泛的应用,下面举例加以说明:二、应用举例1.用于求方程中参系数的值例1 设m是不小于-1的实数,使得关于x的方程x2+2(m-2)x+m2-3m+3=0有两个不相等  相似文献   

11.
一元二次方程ax~2+bx+c=0(a≠0)的根的情况以及与系数a、b、c的直接关系,是由判别式△=b~2-4ac与“根与系数的关系”直接给出的,在使用时,要特别重视a≠0的条件. 本文就判别式的应用举例如下: 一、不解方程,判别方程根的情况  相似文献   

12.
一元二次方程是初中代数的重要内容,它是一种只含有一个未知数,并且未知数的最高次数是2的整式方程.其一般形式为ax2+bx+c=0(a≠0).学习了一元二次方程根的意义、解法及其根的判别式后,灵活利用它们,可迅速地解答一些竞赛试题.一、灵活利用根的意义若x0是一元二次方程ax2+bx+c=0的根,那么ax_0~2+bx0+c=0,反之,若ax_0~2+bx0+c=0(a≠0),那么x0是一元二次方程ax2+bx+c=0的根.例1 已知a是方程x2-3x+1=0的根,则2a2-5a-2+3/a2+1的值是__.(1996年昆明市初中  相似文献   

13.
在方程ax^2+bx+c=0(a≠0)中,若a+b+c=0,则方程二根为1和c/a;反之,当方程有一根为1,则另一根为c/a且a+b+c=0,应用这个性质解题,常能收到出奇制胜之数,现举例如下。  相似文献   

14.
对于实数系一元二次方程 ax2 +bx+c=0 (a≠ 0 ) ,如果 b2 - 4ac>0 ,那么方程有两个不相等的实数根 ;b2 - 4ac<0 ,那么方程没有实数根 .这就是一元二次方程根的判别式定理 ,我们把△ =b2 - 4ac叫做方程 ax2+bx+c=0 (a≠ 0 )的判别式 .这个定理的逆命题也是成立的 .判别式定理揭示了一元二次方程的系数与它的根之间的内在联系 ,它的应用主要有以下几个方面 .1 .判断方程根的性质 .在初中阶段我们研究的是实数系数的一元二次方程 ,有下列命题 :(1 )一元二次方程 ax2 +bx+c=0 (a≠ 0 )中 ,如果 a、 b、 c是有理数且△ =b2 - 4ac是一个完全平方数…  相似文献   

15.
构造一元二次方程是一种重要的解题技巧,它可以使一些看似与方程无关的问题,用方程的知识得以简捷地解决.那么,应根据什么来构造一元二次方程呢? 一、利用一元二次方程根的意义我们知道,若x1,x2是方程ax2+bx+c=0(a≠0)的两个根,则有ax12+bx1+c=0、ax22+bx2+c=  相似文献   

16.
<正> 关于一元二次方程ax2+bx+c=0(a≠0)的根的判别式△=b2-4ac,我们知道有三个方面的应用: 1.不解方程,判别一元二次方程根的情况; 2.证明一元二次方程有无实数根; 3. 根据方程根的条件,求方程中待定系数的值. 我们在解与实数根相关的问题时,也常常使用“△”,但又常常被  相似文献   

17.
一、韦达定理的意义一元二次方程ax~2+bx+c=0的根x_1、x_2与系数a、b、c有如下关系:x_1+x_2=-b/a,x_1x_2=c/a. 这是法国数学家韦达于1559年首先给出的,因而称为“韦达定理”.特别地,对于方程x~2+px+q=0而言,它的两根x_1、x_2满足x_1+x_2=-p,且x_1x_2=q. 顺便提一下韦达定理的逆定理:  相似文献   

18.
<正> 在解某些代数式的计算或证明问题时,有时能通过挖掘题中的隐含条件,适当构造一元二次方程,然后利用方程的性质顺利地解决问题.举例如下: 一、利用根的定义构造方程例1 设ap2+bp+c=0,aq2+bq+c=0(pq≠0,p≠q). 求证: 证明由题意得,p、q应为方程ax2十bx+c=0的两根.  相似文献   

19.
构造一元二次方程法在数学解题中有着广泛的应用,下面举例说明.一、因符合方程一般形式而构造方程若实数x1,x2满足ax12+bx1+c=0,ax22+bx2+c=0,则可构造一元二次方程ax2+bx+c=0,并将x1,x2视作方程的两个实数根来解决问题.  相似文献   

20.
<正>已知一元二次方程解的情况,我们可以利用根的判别式求方程中参数的取值范围.而在学习了二次函数的图象和性质后,我们更习惯采用数形结合的方法来解决问题.下面通过一例说明和比较这两种方法的运用.例题二次函数y=ax2+bx+c(a≠0),(a,b,c为常数)的图象如图1所示.(1)若方程ax2+bx+c=k(a≠0)有两个不相等的实数根,求k的取值范围;(2)若方程ax2+bx+c=k(a≠0)有两个相等的实数根,求k的值;(3)若方程ax2+bx+c=k(a≠0)没有实数根,求k的取值范围.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号