首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This purpose of this study was to examine the ways in which three prospective teachers who had early opportunities to teach science would approach representing science content within the context of their student teaching experiences. The study is framed in the literature on pedagogical content knowledge and learning to teach. A situated perspective on cognition is applied to better understand the influence of context and the role of the cooperating teacher. The three participants were enrolled in an experimental teacher preparation program designed to enhance the teaching of science at the elementary level. Qualitative case study design guided the collection, organization, and analysis of data. Multiple forms of data associated with student teachers' content representations were collected, including audiotaped planning and reflection interviews, written lesson plans and reflections, and videotaped teaching experiences. Broad analysis categories were developed and refined around the subconstructs of content representation (i.e., knowledge of instructional strategies that promote learning and knowledge of students and their requirements for meaningful science learning). Findings suggest that when prospective teachers are provided with opportunities to apply and reflect substantively on their developing considerations for supporting children's science learning, they are able to maintain a subject matter emphasis. However, in the absence of such opportunities, student teachers abandon their subject matter emphasis, even when they have had extensive background and experiences addressing subject‐specific considerations for teaching and learning. © 2002 Wiley Periodicals, Inc. J Res Sci Teach 39: 443–463, 2002  相似文献   

2.
This article investigates the metaphorical duality that exists when school subject departments are concurrently conceptualized as both communities and organizations. Employing a narrative methodology, we use the metaphorical duality to examine the manner in which science teachers negotiate two key aspects of their work; professional learning and teacher leadership. The reified meanings that the department (as community) negotiates are the foundations for the actions that the department (as organization) takes. It is this sense of understanding and commitment to the department as community that provides the department as organization with its political power within a school.  相似文献   

3.
There are multiple views of a learning environment, each having the potential to contribute to our understanding and valuing of learning. In this study, the teacher's view was positive, concerned with children's ownership of ideas and positive self esteem, and based primarily on a view that in order to learn, students need to be actively engaged in activities that are enjoyable and challenging. The researcher had two perspectives, both differing from the teacher's. Consistent with social constructivism the students interacted freely with one another, learned about structures, and produced models that reflected their goals. From this perspective the learning environment was rich. But there was something missing in this classroom — the utilization of resources to assist in reproducing the culture of science. From the perspective of cultural reproduction the learning environment was impoverished.Present approaches to the study of learning environments are grounded in a tradition of using questionnaires to elicit perceptions of the experiences and preferences of students and teachers in terms of constructs selected for their salience to researchers. Although these constructs have changed over the past 20 to 30 years to reflect theoretical models applied to the teaching and learning of science, the use of different methods and theories in the study of learning environments, particularly in elementary grades, offers the promise of improving the quality of learning and teaching science. Studies of elementary students undertaken by Roth and his colleagues in Canada (e.g., Roth, 1996) and Ritchie and Hampson (1996) in Australia are particularly relevant to this chapter. The studies have yielded implications for teaching and learning in terms of fresh theoretical perspectives based on the use of qualitative approaches to the study of learning environments in which technology was used to build ideas about canonical science.When Ms. Scott was first approached about participating in a study she agreed and suggested that building castles would provide a suitable context. Her grade 2 classroom was in an elementary school in the northern part of Florida and contained students from diverse socioeconomic backgrounds. The ethnic composition of the school was approximately 60% Caucasian and 25% African American with the remaining 15% consisting of Asian American and Hispanic students. Few students in grade 2 had limited English proficiency.The interpretative research methods used accessed multiple data sources and were responsive to experiences during intensive visits to the grade two classroom during a three week sequence of activities. Ms. Scott and her students were given multiple opportunities to discuss their roles in their own language. Artifacts from the classroom were collected and intensive analyses of videotapes and 35 mm photographs taken by the teacher were undertaken. This chapter is based on complementary perspectives which are presented in the next two sections. The first incorporates a narrative from Ms. Scott; the second is derived from the researcher's analysis and interpretation of data from the study.  相似文献   

4.
Summary Science teachers naturally rely on their university science experiences as a foundation for teaching middle school science. This foundation consists of knowledge far too complex for the middle level students to comprehend. In order for middle school science teachers to utilize their university science training they must search for ways to adapt their college experiences into appropriate middle school learning experience. The criteria set forth above provide broad-based guidelines for translating university science laboratory experiences into middle school activities. These guidelines are used by preservice teachers in our project as they identify, test, and organize a resource file of hands-on inquiry activities for use in their first year classrooms. It is anticipated that this file will provide a basis for future curriculum development as the teacher becomes more comfortable and more experienced in teaching hands-on science. The presentation of these guidelines is not meant to preclude any other criteria or considerations which a teacher or science department deems important. This is merely one example of how teachers may proceed to utilize their advanced science training as a basis for teaching middle school science.  相似文献   

5.
This paper is concerned with the process of how subject and pedagogic knowledge emerge through teachers' learning in science. It suggests that problematizing subject knowledge through direct experience of learning in science, particularly in those areas that are known to be difficult, constitutes a productive way of turning a deficit model of teacher subject knowledge into a positive experience with considerable potential for the development of pedagogy. The paper draws on exemplification of student learning to contextualize the discussion within current debate in science education concerned with conceptual change and metacognition. It is argued that the act of addressing what are problematic science concepts in their own learning, affords an opportunity for students to focus on the nature of the concepts being explored and how understanding of them might be developed. It is implied that a notion of ‘learning practice’ in university taught sessions, in addition to the embedded model of generating pedagogic insight through teaching experience in school placements, would constitute a productive mechanism for the synthesis of subject and pedagogic knowledge.  相似文献   

6.
This study inquires into the influence of subject communities on the practice of secondary school teachers as they teach a new science and technology course that crosses traditional subject and department boundaries. The study focuses on two teachers from different professional communities—a science teacher and a technology teacher—who were teaching an applied physics course that was piloted in British Columbia. Interview and observational data were collected that illuminate the classroom practices and perspectives of the two teachers. As the teachers taught the course, they both changed their normal teaching practice. Their respective new practices, however, were different in important ways even though they both started with the same course outline, textbooks, and laboratory materials. We interpret these differences in the teachers' practices using sociocultural practice theory and argue that the differences can be understood in terms of the influence of their different professional communities which are shown to provide the backdrops against which the teachers developed their approaches to the course. Recommendations are made that encourage using the subject community as a unit of analysis in educational change studies and using sociocultural practice theory as a theoretical perspective for thinking about educational change and making policy decisions. © 1998 John Wiley & Sons, Inc. J Res Sci Teach, 35: 777–789, 1998.  相似文献   

7.

Pupils' perceptions of their experience of school science have rarely been investigated. The aim of the research reported in this paper, therefore, was to document the range of views that pupils held about the school science curriculum, the aspects they found either interesting and/or valuable, and their views about its future content. As such, the research aimed to articulate their views as a contribution to the debate about the future form and function of the school science curriculum. The method adopted to elicit their views was to use focus groups-a methodology that has not been extensively used in the science education research. Reported here are the findings from 20 focus groups conducted with 144 16-year-old pupils in London, Leeds and Birmingham, split both by gender and whether the pupils intended to continue, or not, with the study of science post-16. The findings of this research offer a window into pupils' perspective of school science revealing both their discontents and satisfaction with the existing curriculum. On the negative side, many pupils perceived school science to be a subject dominated by content with too much repetition and too little challenge. From a more positive perspective, pupils saw the study of science as important and were engaged by topics where they could perceive an immediate relevance, practical work, material that was challenging and high-quality teaching. The implications of these findings and the insights they provide for curriculum policy and school science curricula are discussed.  相似文献   

8.
The purpose of this study was to understand how an 8th grade science class used a structured problem-based learning (PBL) strategy to study volcanoes and to discuss some of the issues that science teachers might encounter when designing and implementing the PBL strategy. This study took place at Collins Middle School, which is located in a cosmopolitan community in Illinois. The PBL lessons, which a teacher taught cooperatively with his student-teacher, required ten class periods to study two real-life volcanic phenomena. The guiding research questions were: (a) in what ways did the teachers (Mr. Brown and Ms. Jones) facilitate student learning about volcanoes using the PBL strategy?; and (b) what were the students’ engagements like during the PBL classes on a volcano unit? This study’s findings supported three main assertions: first, the teachers’ questions and group dynamics guided and facilitated the students’ course of learning; second, with the teachers’ specific guidance, the students collaboratively built up their supporting evidence; most of the supporting evidence was much more developed than just listing the terms or simple facts on volcanoes; and, third, there existed a tension between the teachers’ ideals and the implementation of the PBL strategy. They tended to slip into the traditional role of focusing on scientific facts about volcanoes.  相似文献   

9.
We investigated differences between field-study classrooms and traditional science classrooms in terms of the learning environment and students’ attitudes to science, as well as the differential effectiveness of field-study classrooms for students differing in sex and English proficiency. A modified version of selected scales from the What Is Happening In this Class? questionnaire was used to assess the learning environment, whereas students’ attitudes were assessed with a shortened version of a scale from the Test of Science Related Attitudes. A sample of 765 grade 5 students from 17 schools responded to the learning environment and attitude scales in terms of both their traditional science classrooms and classrooms at a field-study centre in Florida. Large effect sizes supported the effectiveness of the field-studies classroom in terms of both the learning environment and student attitudes. Relative to the home school science class, the field-study class was considerably more effective for students with limited English proficiency than for native English speakers.  相似文献   

10.
Research on learning science in informal settings and the formal (sometimes experimental) study of learning in classrooms or psychological laboratories tend to be separate domains, even drawing on different theories and methods. These differences make it difficult to compare knowing and learning observed in one paradigm/context with those observed in the other. Even more interestingly, the scientists studying science learning rarely consider their own learning in relation to the phenomena they study. A dialectical, reflexive approach to learning, however, would theorize the movement of an educational science (its learning and development) as a special and general case—subject matter and method—of the phenomenon of learning (in/of) science. In the dialectical approach to the study of science learning, therefore, subject matter, method, and theory fall together. This allows for a perspective in which not only disparate fields of study—school science learning and learning in everyday life—are integrated but also where the progress in the science of science learning coincides with its topic. Following the articulation of a contradictory situation on comparing learning in different settings, I describe the dialectical approach. As a way of providing a concrete example, I then trace the historical movement of my own research group as it simultaneously and alternately studied science learning in formal and informal settings. I conclude by recommending cultural-historical, dialectical approaches to learning and interaction analysis as a context for fruitful interdisciplinary research on science learning within and across different settings.  相似文献   

11.
Science textbooks are dominant influences behind most secondary science instruction but little is known about teachers' approach to science reading. The purpose of this naturalistic study was to develop and validate a Science and Reading Questionnaire to assess secondary science teachers' attitudes toward science reading and their beliefs or informed opinions about science reading. A survey of 428 British Columbia secondary science teachers was conducted and 215 science teachers responded. Results on a 12-item Likert attitude scale indicated that teachers place high value on reading as an important strategy to promote learning in science and that they generally accept responsibility for teaching content reading skills to science students. Results on a 13-item Likert belief scale indicated that science teachers generally reject the text-driven model of reading, but they usually do not have well-formulated alternative models to guide their teaching practices. Teachers have intuitive beliefs about science reading that partially agree with many research findings, but their beliefs are fragmented and particularly sketchy in regard to the cognitive and metacognitive skills required by readers to learn from science texts. The findings for attitude, belief, and total scales were substantiated by further questions in the Science and Reading Questionnaire regarding classroom practice and by individual interviews and classroom observations of a 15-teacher subsample of the questionnaire respondents.  相似文献   

12.
A national curriculum comprising statements of attainment at different levels must be underpinned by some idea of “progression” in learning. Questions arise as to the nature and meaning of progression. To gain a deeper insight into how children progress in their understanding of science, this research involves the construction and testing of a hypothetical learning sequence for the topic of forces. This interim report explains how children aged 7 to 13 are being interviewed to explore their explanations of phenomena involving forces. These explanations will be mapped onto the sequence to provide a multi-dimensional model of progression. Specializations: assessment, curriculum development. Specializations: assessment, investigations in science, progression in learning science.  相似文献   

13.
In this article, we consider the complex and dynamic inter-relationships between individual science teachers, the social space of their work and their dispositions towards teacher leadership. Research into the representation of school science departments through individual science teachers is scarce. We explore the representations of four individual teachers to the assertions of teacher leadership proposed by Silva et al. (Teach Coll Rec, 102(4):779–804, 2000). These representations, expressed during regular science department meetings, occur in the social space of Bourdieu’s “field” and are a reflection of the “game” of science education being played within the department. This departmentally centred space suggests an important implication when considering the relationship between subject departments and their schools. The development of an individual’s representation of teacher leadership and the wider “field” of science education appears to shape the individual towards promoting their own sense of identity as a teacher of science, rather than as a teacher within a school. Our work suggests that for these individuals, the important “game” is science education, not school improvement. Consequently, the subject department may be a missing link between efforts to improve schools and current organizational practices.  相似文献   

14.
Conclusion The present study provided insights regarding the interactions that take place in collaborative science laboratory and regarding the outcome of such interactions. Science laboratory experiences structured by teachers have been criticized for allowing very little, if any, meaningful learning. However, this study showed that even structured laboratory experiments can provide insightful experience for students when conducted in a group setting that demanded interactive participation from all its members. The findings of the present study underscored the synergistic and supportive nature of collaborative groups. Here, students patiently repeated explanations to support the meaning construction on the part of their slower peers and elaborated their own understanding in the process; groups negotiated the meaning of observations and the corresponding theoretical explanations; students developed and practiced a range of social skills necessary in today’s workplace; and off-task behavior was thwarted by the group members motivated to work toward understanding rather than simply generating answers for task completion. The current findings suggest an increased use of collaborative learning environments for the teaching of science to elementary education majors. Some teachers have already made use of such settings in their laboratory teaching. However, collaborative learning should not be limited to the laboratory only, but be extended to more traditionally structured classes. The effects of such a switch in activity structures, increased quality of peer interaction, mastery of subject matter content, and decreased anxiety levels could well lead to better attitudes toward science among preservice elementary school teachers and eventually among their own students.  相似文献   

15.
This paper reports findings about the impact of departmental characteristics on secondary science teachers' work. It is drawn from a larger study, which also looked at ideological and material influences on practice. It focuses particularly on those aspects of the departmental environment which teachers themselves referred to frequently when discussing their work. These were: the managerial style of the department; the use made of schemes of work; the emphasis on the science disciplines as compared with 'science'; and the characteristics of pupils. It argues that such departmental characteristics are sometimes symbiotic, and that they are most subtly characterized in mainstream comprehensive schools. It also suggests that, while these influences do not necessarily lead to variation in the broad forms of pedagogy employed, they are perceived by teachers as significantly influencing their professional working environment, and the experience of teaching science.  相似文献   

16.
In science education, reform frequently is conceived and implemented in a top-down fashion, whether teachers are required to engage in change by their principals or superintendents (through high-stakes testing and accountability measures) or by researchers, who inform teachers about alternatives they ought to implement. In this position paper on science education policy, I draw on first philosophy to argue for a different approach to reform, one that involves all stakeholders—teachers, interns, school and university supervisors, and, above all, students—who participate in efforts to understand and change their everyday praxis of teaching and learning. Once all stakeholders experience control over the shaping and changing of classroom learning (i.e., experience agency), they may recognize that they really are in it together, that is, they experience a sense of solidarity. Drawing on ethnographic vignettes, science teaching examples, and philosophical concepts, I outline how more democratic approaches to reform can be enabled.  相似文献   

17.
A sample of fourteen secondary school biology teachers chosen from twelve schools were interviewed. The purpose was to determine their views on how controversial issues in science might be handled in the secondary school science classroom and whether the issues of surrogacy and human embryo experimentation were suitable controversial issues for discussion in schools. In general, teachers indicated that controversial issues deserve a more prominent place in the science curriculum because they have the potential to foster thinking, learning, and interest in science. The issues of surrogacy and human embryo experimentation were seen as appropriate contexts for learning, provided that teachers were well informed and sensitive to both the students and to the school environment. Specializations: controversial issues in human reproductive biology, teacher education.  相似文献   

18.
Conclusions Beginning student teachers have already acquired very definite views about teaching science before they begin their teacher training course. These views are generally similar to the views espoused by science educators, but are contrary to the classroom practices of many teachers. Their views seem to have origins in what the students perceive to have been meaningful and enjoyable learning experiences for themselves in their own schooling; and to a lesser extent for children they have observed. Female students who have studied more science at high school tend to favour the use of worksheets in experimental work. Several interesting questions arise from these findings: When these students begin to teach as qualified teachers, will they still espouse the same opinions? If so, does that mean that there is a ‘new wave’ of teachers entering the service who are more committed to hands-on activity work than their older colleagues? If not, what aspects of the teacher training process have caused them to change their opinions? Will these present students be using hands-on strategies themselves after they have been teaching for some time? That is, do system and school constraints effectively prevent teachers from using such strategies? Can secondary science teachers do more to influence positively their students' opinions about teaching science, such as engendering more positive attitudes to science, incorporating more hands-on work, and relying less on printed worksheets in laboratory work? This exploratory work has highlighted the concern expressed by Morrissey (1981) in that there is a great need for long term longitudinal studies of student teachers' attitudes to teaching science, with a particular focus on their teaching behaviours after graduation.  相似文献   

19.
In this study, undertaken in an attempt to expand our understanding of science learning by deaf students, five teachers are interviewed about their views, based on their own experiences as Deaf students. They are all my former students and were among the first to successfully complete the upper secondary school with a university entrance certificate from a Norwegian school for deaf students. Physics was their major subject. These teachers see the systematic work in class discussions, especially on the concepts of physics, as a major contributor to their success, and they try to use similar methods in their own teaching. They believe that a thorough discussion of a topic using sign language prior to the reading of the textbook is crucial.  相似文献   

20.
The Lesson Study for Accessible Science (LSAS) project created middle school teams comprised of both science and special education teachers who engaged in collaborative work to improve instruction in inclusive classrooms. The intervention is based on Lesson Study, a professional development approach that originated in Japan, which supports the systematic examination of practice and student understanding. Using an experimental design, teams of teachers were randomly assigned to the LSAS intervention or to a wait‐list comparison group. The results of this study suggest that science and special educators in the LSAS intervention were able to generate more accommodations for students with learning disabilities, and they increased their ability to set an instructional context and adapt an instructional plan to meet science learning goals for all students in an inclusive classroom. They did not, however, show significant increases in their knowledge of science content or learning disabilities. © 2012 Wiley Periodicals, Inc. J Res Sci Teach 49: 1012–1034, 2012  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号