首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 359 毫秒
1.
在解有关一元二次方程的根的问题时,同学们习惯于用韦达定理求解.其实,有时直接求出方程的根,更能迅速地解决问题.现举例说明. 例1已知关于x的方程x~2-2mx m~2-1=0的两个实根x_1、x_2满足x_1~2 x_2~2=4,求m的值. 分析:因为x~2-2mx m~2-1可分解为(x-m 1)(x-m-1),所以易求得方程的根为:x_1=m-1,x_2=m 1.根据x_1~2 x_2~2=4,可列出m满足的方程,进  相似文献   

2.
题目:当m取什么实数时,方程x~2 (m-2)x (m 3)=0两根平方和有最小值?最小值是多少?解法一:设此方程的两根为x_1、x_2,则x~2_1 x~2_2=(x_1 x_2)~2-2x_1x_2=〔-(m-2)〕~2-2(m 3)=m~2-6m-2∴当m=-(b/2a)即m=3时,x~2_1 x~2_2=m~2-6m-2 有最小值为:3~2-6×3-2=-11。解法二:设此方程的两根为x_1、x_2,则  相似文献   

3.
在学习“一元二次方程”中,老师出了这样一道讨论题:已知关于x的一元二次方程:①x~2-2mx+m~2-m=0;②x~2-(4m+1)x+4m~2+m=0;③(m~2+1)x~2-(2m+1)x+1=0中至少有一个方程有实数根。试求m的取值范围。  相似文献   

4.
M·P·C回音壁     
理科小超人: 你好! 我就要上初二了,暑假我自学了初三的数学课程,做了一道关于一元二次方程的习题,但我的答案与书中给的答案对不上,请你帮助解答。 题目:已知关于x的万程x~2+2(m-2)x+m~2+4=0的两根的平方和比两根的积大21,求m的值。 我的解答是:设方程的两根为x_1,x_2,根据根与系数的关系,得x_1+x_2=-2(m-2),x_1x_2=m~2+4。 根据题意,得x_1~2+x_2~2-x_1x_2=(x_1+x_2)~2-3x_1x_2=21,即[-2(m-2)]~2-3(m~2+4)=21。  相似文献   

5.
利用增量代换来解答和处理问题的方法叫做增量代换法。增量代换法是中学教学中的一种重要方法,在解决众多的数学问题中表现出奇妙的作用。一、解方程例1 解方程 (2x~2-3x+7)~(1/2)-(2x~2-3x+2)~(1/2)=1。解;由此方程的特征,可设 (2x~2-3x+7)~(1/2)=1+a, (1)则(2x~2-3x+2)~(1/2)=a(a≥0)。 (2)(1)~2-(2)~2得a=2。∴ (2x~2-3x+2)~(1/2)=2。解得 x_1=2,x_2=-1/2。经检验知,均为原方程的根。二、证不等式例2 设a,b,m∈P~+,且aa/b。证明:由已知不妨设b=a+a(a>0),则  相似文献   

6.
下题是我们在学习一元二次方程的根的判别式时所常见的: 如果m为有理数,试确定k值,使方程x~2-2mx+10x+4k=0的根是有理数。拿到题目后,有的同学可能会这样解吧! 解原方程即x~2+(10-2m)x+4k=0,要使它的根是有理数,只需其根的判别式△=(10-2m)~2-16k=100-40m+4m~2-16k=4(m~2-10m+25-4k) ①是完全平方式,即m~2-10m+25-4k=0有相等的根,即以m为元的此二次方程的判别式△′=100-4(25-4k)=0,  相似文献   

7.
一、填空题(本题10小题,前5小题每题6分,后5小题每题8分;共70分) 1.实数x使x-1/x=5~(1/2),则x+1/x=____。 2.若a、b是二次方程x~2-x+g=0的两个根,则a~3+b~3+3(a~3b+ab~3)+6(a~3b~2+a~2b~3)的值是____。 3.设m为实数,方程x~2-5x+m=0有一个根的相反数是方程x~2+mx+5=0的一个根,则m=____。 4.用[a]表示不超过实数a的最大整数,{a}=a-[a]表示a的小数部分,则方程[x~3]+[x~2]+[x]={x}-1的解是____。  相似文献   

8.
天津市1998年中考数学第27题: 若方程m~2x~2-(2m-3) 1=0的两个实数根的倒数和是S,求S的取值范围. 错解:设方程的两个实数根为x_1、x_2 由韦达定理可得  相似文献   

9.
有些数学题不是从方程求解形式提出,但若能设法对某些条件变换成两数和与两数积,然后用韦达定理的逆定理来布列方程求解,使问题得到解决。 [例1] 若x=2-3~(1/2),求x~1-5x~3 6x~2-5x的值。显然,这题直接代入计算是很繁的,若根据一元二次方程根的性质,由x=2-3~(1/2)可知x_1=2-3~(1/2),x_2=2 3~(1/2),一定是某一元二次方程的两根,巧用根和系数关系定使解题简捷。解由根与系数关系可知,x_1=2-3~(1/2),x_2=2 3~(1/2)是方程x~2-4x 1=0的两根, ∴ x~4-5x~3 6x~2-5x=(x~2-4x 1)(x~2-x 1)-1=0。 (x~2-x 1)-1=-1。例2 已知实数a、b、c满足:a=6-b,c~2  相似文献   

10.
设方程 ax~2+bx+c=0(a≠0)的两根为 x_1,x_2,那么 x_1+x_2=-(b/a),x_1·x_2=(c/a).这就是一元二次方程根与系数的关系.由根与系数的关系,我们知道:以两个数 x_1,x_2为根的一元二次方程(二次项系数为1)是x~2-(x_1+x_2)x+x_1·x_2=0.根与系数的关系使我们能够由方程来讨论根的性质;反之,则可以由根的性质来确定方程的系数.因而,根与系数的关系的应用相当广泛.我  相似文献   

11.
初三代数教材对一元二次方程根与系数关系叙述为:如果ax~2+bsr+c=0(a≠0)的两个根是x_1、x_2,那么x_1+x_2=-b/a,x_1·x_2=c/a。此定理对结论成立的先决条件交代很清楚,即“原方程存在两个根x_1和x_2”。但在教学过程中,我发现有些学生在运用这一关系时却只记住了结果,忽视了条件,因粗心大意导致解题错误。 错例1.判断正误:方程ax~2+bx+c=(a≠0)两根之和为-b/a。( ) 错误判断为“对”。 错例2.若方程x~2+(m~2-1)x+1+m=0的两根互为相反数,则m的值为( ) (A)1或-1; (B)1; (C)-1; (D)0。 错选(A)。  相似文献   

12.
本文拟将一代数定理的应用介绍如下,供同学们参考 [定理] 已知a_0+a_1+a_2+……+a_(n-1)+a_n=0,求证:一元n次方程a_0x~n+a_1x~(n-1)+a_2x~(n-2)+……+a_(n-1)x+a_n=0(a_0≠0)有一个根为1。证明:(略)下面谈一下这个定理的应用: [例1] 已知方程(m+1)(x~2-x)=(m-1)·(x-1)的两根绝对值相等而符号相反,求m的值。解:原方程变形为(m+1)x~2-2mx+(m-1)=0,由题设知m+1≠0,但m+1-2m+m-1=0,∴此方程有一个根为1。而原方程两根绝对值相等、符  相似文献   

13.
在近几年的中考试题中,有关抛物线与探索三角形相结合的题目时常出现,这类题求解时头绪比较复杂,要求答题者对数学知识能融会贯通,运用自如。解这类题目时,首先假设探求的三角形存在,然后利用题目条件和所学知识,得出与题目条件相符(或不符)的结论。 例1 已知抛物线y=ax~2 bx c与y轴交于点C,与x轴交于点A(x_1,0)、B(x_2,0)(x_1相似文献   

14.
虚系数一元二次方程总可化为如下形式: x~2+(a+bi)x+c+di=0 (*)其中,a、b、c、d(R,b、d不同时为零. [定理] 方程(*)有实根的充要条件是b≠0且d~2=b |a b c d|.这时方程(*)的有唯一实根-d/b. 证:利用韦达定理易知(*)不能有二实根,也不能有二共轭虚根.设x_1(R_1,x_2∈R是(*)的二根,则  相似文献   

15.
1.在方程x~3+lx~2+mx+n=0中,系数l、m、n都是自然数旦分别能被自然数p、p~2p~3整除,方程的根为α、β、γ,则对于任何自然数k,α~k+β~k+γ~k为整数,且能被p~k整除。 2.在方程x~4+lx~3+mx~2+rx+q=0中,系数l、m、r、q都是自然数且分别能被自然数p、p~2、p~3、p~4整除,方程的根为α、β、γ、δ,则对于任何自然数k,α~k+β~k+γ~k+δ~k为整数且能被p~k整除。一般的有: 3.在方程x~n+α_1x~(n-1)+α_2x~(n-2)+…+a_(n-2)x~2+a_(n-1)x+α_n0中,系数α_1、α_2、…、α_都是自数然且分别能被自然数p、p~2、…、p~n整除。方程的根为x_1、x_2、…、x_n,则对于任何自然数k,x_1~k+x_2~k+…+x_a~k为整数且能被p~k整除。  相似文献   

16.
1559年,法国数学家韦达提出一个关于一元n次方程根与系数关系的定理:设方程a_0x~n+a_1x~(n-1)+a_2x~(n-2)…+a_(n-1)x+a_n=0的n个根为x_1,x_2,…,x_n,那么x_1+x_2+…+x_n=-(a_1)/(a_0)x_1x_2+x_1x_3+…+x_1x_0+…+x_(n-1)x_n=(a_2)/(a_0)  相似文献   

17.
安徽省1988年“中考”数学试题最后一题是:已知方程2x~2-5mx+3n=0两根之比为2:3,而方程x~2-2nx+8m=0两根相等(m、n是不为零的实数)。求证:k为任何实数时,方程mx~2+(n+k-1)x+(k+1)=0恒有实数根。  相似文献   

18.
一、教学中的一个问题己知方程x~2+px+q=0的两个根x_1、x_2,求以此两根的平方为两根的方程.解:∵x_1、x_2是方程x~2+px+q=0的根,由韦达定理,得  相似文献   

19.
先看一个例题,如图1,⊙O的方程为x~2+y~2=1,A(2,1)为圆外一点,AP,AQ是⊙O的两条切线,P,Q是切点,求切点弦PQ的方程。解:据设,过点P的圆的切线方程为x_1a+y_1y=1(1)∵A(2,1)在切线上,∴2x_1+y_1=1,∴y_1=1-2x_1,同理y_2=1-2x_2。由两点式得切点弦PQ的方程为(x-x_1)/(x_1-x_2)=(y-(1-2x_1))/((1-2x_1)-(1-2x_2))经整理得2x+y=l(2) 方程(2)正好与方程(1)中把P(x_1,y_1)的坐标换成A的坐标。这是巧合吗?不!有如下结论:自圆外一点A(m,n)向圆引两切线,所得切点弦方程与切点为(x_1,y_1)的圆的切线方程中把(x_1,y_1)换成(m,n)的  相似文献   

20.
解无理方程,通常是采用两边平方的办法。但这样做往往要进行两次以上的平方,出现高次方程,给解方程带来困难。本文介绍另一种解法——“平方差法”。先看例1 解方程(x~2+x-2)~(1/2)-(x~2+x-5)~(1/2)=1 (1) 解:由恒等式((x~2+x-2)~(1/2))~2-((x~2+x-5)~(1/2))~2=3 (2) (2)÷(1)得(x~3+x-2)~(1/2)+(x~2+x-5)~(1/2)=3 (3) (1)+(3)化简得(x~2+x-2)~(1/2)=2 (4) 两边平方整理得x~2+x-6=0 解得x_1=2,x_2=-3。经检验知,x_1=2,x_2=-3都是原方程的根。用这种方法解无理方程,虽然避免了高次方程的出现,但是有可能遗根。请看例2 解方程(x~2+5x-6)~(1/2)+2=(x~2+x-2)~(1/2)+22~(1/2) 解:将原方程变形为(x~2+5x-6)~(1/2)-(x~2+x-2)~(1/2)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号