首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The aims of this study were to examine the use of the critical velocity test as a means of predicting 2000-m rowing ergometer performance in female collegiate rowers, and to study the relationship of selected physiological variables on performance times. Thirty-five female collegiate rowers (mean ± s: age 19.3 ± 1.3 years; height 1.70 ± 0.06 m; weight 69.5 ± 7.2 kg) volunteered to participate in the study. Rowers were divided into two categories based on rowing experience: varsity (more than 1 year collegiate experience) and novice (less than 1 year collegiate experience). All rowers performed two continuous graded maximal oxygen consumption tests (familiarization and baseline) to establish maximal oxygen uptake (VO(2max)), peak power output, and power output at ventilatory threshold. Rowers then completed a critical velocity test, consisting of four time-trials at various distances (400 m, 600 m, 800 m, and 1000 m) on two separate days, with 15 min rest between trials. Following the critical velocity test, rowers completed a 2000-m time-trial. Absolute VO(2max) was the strongest predictor of 2000-m performance (r = 0.923) in varsity rowers, with significant correlations also observed for peak power output and critical velocity (r = 0.866 and r = 0.856, respectively). In contrast, critical velocity was the strongest predictor of 2000-m performance in novice rowers (r = 0.733), explaining 54% of the variability in performance. These findings suggest the critical velocity test may be more appropriate for evaluating performance in novice rowers.  相似文献   

2.
Abstract The aims of this study were to examine ground contact characteristics, their relationship with race performance, and the time course of any changes in ground contact time during competitive 800?m and 1500?m races. Twenty-two seeded, single-sex middle-distance races totalling 181 runners were filmed at a competitive athletics meeting. Races were filmed at 100?Hz. Ground contact time was recorded one step for each athlete, on each lap of their race. Forefoot and midfoot strikers had significantly shorter ground contact times than heel strikers. Forefoot and midfoot strikers had significantly faster average race speed than heel strikers. There were strong large correlations between ground contact time and average race speed for the women's events and men's 1500?m (r?=?-0.521 to -0.623; P?相似文献   

3.
Twenty specialist marathon runners and 23 specialist ultra-marathon runners underwent maximal exercise testing to determine the relative value of maximum oxygen consumption (VO2max), peak treadmill running velocity, running velocity at the lactate turnpoint, VO2 at 16 km h-1, % VO2max at 16 km h-1, and running time in other races, for predicting performance in races of 10-90 km. Race time at 10 or 21.1 km was the best predictor of performance at 42.2 km in specialist marathon runners and at 42.2 and 90 km in specialist ultra-marathon runners (r = 0.91-0.97). Peak treadmill running velocity was the best laboratory-measured predictor of performance (r = -0.88(-)-0.94) at all distances in ultra-marathon specialists and at all distances except 42.2 km in marathon specialists. Other predictive variables were running velocity at the lactate turnpoint (r = -0.80(-)-0.92); % VO2max at 16 km h-1 (r = 0.76-0.90) and VO2max (r = 0.55(-)-0.86). Peak blood lactate concentrations (r = 0.68-0.71) and VO2 at 16 km h-1 (r = 0.10-0.61) were less good predictors. These data indicate: (i) that in groups of trained long distance runners, the physiological factors that determine success in races of 10-90 km are the same; thus there may not be variables that predict success uniquely in either 10 km, marathon or ultra-marathon runners, and (ii) that peak treadmill running velocity is at least as good a predictor of running performance as is the lactate turnpoint. Factors that determine the peak treadmill running velocity are not known but are not likely to be related to maximum rates of muscle oxygen utilization.  相似文献   

4.
The pacing behaviors used by elite athletes differ among individual sports, necessitating the study of sport-specific pacing profiles. Additionally, pacing behaviors adopted by elite runners differ depending on race distance. An “all-out” strategy, characterized by initial rapid acceleration and reduction in speed in the later stages, is observed during 100 m and 200 m events; 400 m runners also display positive pacing patterns, which is characterized by a reduction in speed throughout the race. Similarly, 800 m runners typically adopt a positive pacing strategy during paced “meet” races. However, during championship races, depending on the tactical approaches used by dominant athletes, pacing can be either positive or negative (characterized by an increase in speed throughout). A U-shaped pacing strategy (characterized by a faster start and end than during the middle part of the race) is evident during world record performances at meet races in 1500 m, 5000 m, and 10,000 m events. Although a parabolic J-shaped pacing profile (in which the start is faster than the middle part of the race but is slower than the endspurt) can be observed during championship 1500 m races, a negative pacing strategy with microvariations of pace is adopted by 5000 m and 10,000 m runners in championship races. Major cross country and marathon championship races are characterized by a positive pacing strategy; whereas a U-shaped pacing strategy, which is the result of a fast endspurt, is adopted by 3000 m steeplechasers and half marathoners. In contrast, recent world record marathon performances have been characterized by even pacing, which emphasizes the differences between championship and meet races at distances longer than 800 m. Studies reviewed suggest further recommendations for athletes. Throughout the whole race, 800 m runners should avoid running wide on the bends. In turn, during major championship events, 1500 m, 5000 m, and 10,000 m runners should try to run close to the inside of the track as much as possible during the decisive stages of the race when the speed is high. Staying within the leading positions during the last lap is recommended to optimize finishing position during 1500 m and 5000 m major championship races. Athletes with more modest aims than winning a medal at major championships are advised to adopt a realistic pace during the initial stages of long-distance races and stay within a pack of runners. Coaches of elite athletes should take into account the observed difference in pacing profiles adopted in meet races vs. those used in championship races: fast times achieved during races with the help of one or more pacemakers are not necessarily replicated in winner-takes-all championship races, where pace varies substantially. Although existing studies examining pacing characteristics in elite runners through an observational approach provide highly ecologically valid performance data, they provide little information regarding the underpinning mechanisms that explain the behaviors shown. Therefore, further research is needed in order to make a meaningful impact on the discipline. Researchers should design and conduct interventions that enable athletes to carefully choose strategies that are not influenced by poor decisions made by other competitors, allowing these athletes to develop more optimal and successful behaviors.  相似文献   

5.
The purpose of the study was to relate three determinants of distance running success, (a) maximal oxygen consumption (VO2max), (b) ventilatory threshold (VT), and (c) running economy (RE), to actual running time in a 5-km race (ART). Twenty-four female runners (M age = 15.9 years) from four high school teams that competed at the Massachusetts All-State 5-km Cross Country Championship Meet and placed 1st, 7th, 19th, and 20th were tested in the laboratory. The mean VO2max of these runners was 61.7 ml.kg-1.min-1, HRmax 201 b.min-1, VEmax 100 L.min-1, and RER 1.10. The VT occurred at 79% of the VO2max, and HR of 184 b.min-1 (92% of HRmax). The velocity at VT (vVT) and velocity at VO2max (vVO2max) was correlated with ART, r(22) = .78 and .77 (p less than .001), respectively. The VO2 at VT and at maximal exercise was correlated with ART by r(22) = -.66 and -.69 (p less than .001), respectively. The VO2 at 215 m.min-1 (8 mph) was poorly related to ART, r(22) = -.05, p greater than .05. It was concluded that either of the derived variables vVT and vVO2max appear to explain significant variation in distance running performance among adolescent female cross country runners.  相似文献   

6.
Traditionally, it has been assumed that during middle-distance running oxygen uptake (VO2) reaches its maximal value (VO2max) providing the event is of a sufficient duration; however, this assumption is largely based on observations in individuals with a relatively low VO2max. The aim of this study was to determine whether VO2max is related to the VO2 attained (i.e. VO2peak) during middle-distance running on a treadmill. Fifteen well-trained male runners (age 23.3 +/- 3.8 years, height 1.80 +/- 0.10 m, body mass 76.9 +/- 10.6 kg) volunteered to participate in the study. The participants undertook two 800-m trials to examine the reproducibility of the VO2 response. These two trials, together with a progressive test to determine VO2max, were completed in a randomized order. Oxygen uptake was determined throughout each test using 15-s Douglas bag collections. Following the application of a 30-s rolling average, the highest VO2 during the progressive test (i.e. VO2max) was compared with the highest VO2 during the 800-m trials (i.e. VO2peak) to examine the relationship between VO2max and the VO2 attained in the 800-m trials. For the 15 runners, VO2max was 58.9 +/- 7.1 ml x kg(-1) x min(-1). Two groups were formed using a median split based on VO2max. For the high and low VO2max groups, VO2max was 65.7 +/- 3.0 and 52.4 +/- 1.8 ml x kg(-1) x min(-1) respectively. The limits of agreement (95%) for test-retest reproducibility for the VO2 attained during the 800-m trials were +/- 3.5 ml x kg(-1) x min(-1) for a VO2peak of 50.6 ml x kg(-1) x min(-1) (the mean VO2peak for the low VO2max group) and +/- 2.3 ml x kg(-1) x min(-1) for a VO2peak of 59.0 ml x kg(-1) x min(-1) (the mean VO2peak for the high VO2max group), with a bias in VO2peak between the 800-m runs (i.e. the mean difference) of 1.2 ml x kg(-1) x min(-1). The VO2peak for the 800-m runs was 54.8 +/- 4.9 ml x kg(-1) x min(-1) for all 15 runners. For the high and low VO2max groups, VO2peak was 59.0 +/- 3.3 ml x kg(-1) x min(-1) (i.e. 90% VO2max) and 50.6 +/- 2.0 ml x kg(-1) x min(-1) (i.e. 97% VO2max) respectively. The negative relationship (-0.77) between VO2max and % VO2max attained for all 15 runners was significant (P = 0.001). These results demonstrate that (i) reproducibility is good and (ii) that VO2max is related to the %VO2max achieved, with participants with a higher VO2max achieving a lower %VO2max in an 800-m trial on a treadmill.  相似文献   

7.
The aim of this study was to estimate the energy contributions in middle-distance running events for male and female university athletes. The oxygen uptake (VO2) response during high-speed running was measured directly during exhaustive treadmill tests. Muscle mass was estimated using anthropometry. Each athlete completed an average of three races over 400 m, 800 m or 1500 m. Five minutes after each race, they provided a blood sample for determination of blood lactate concentration. For each race, energy cost, which was expressed as oxygen equivalents, was calculated as the sum of the aerobic and anaerobic components. The aerobic contribution was calculated as the sum of oxygen stores (2.3 ml O2.kg body mass-1) and total VO2 (based on the VO2 response to treadmill running). The anaerobic contribution was calculated as the sum of the energy available from phosphocreatine stores (37 ml O2.kg muscle mass-1) and the energy from glycolysis (3.0 ml O2.kg body mass-1 per mmol.l-1 increase in blood lactate concentration). For the women, the anaerobic energy contributions for the 400 m, 800 m and 1500 m averaged 62% 33% and 17% respectively. For the men, the anaerobic contributions averaged 63%39% and 20%respectively. This information will help coaches and sport scientists to design and implement individualized training programmes.  相似文献   

8.
Comparison of maximal anaerobic running tests on a treadmill and track   总被引:1,自引:0,他引:1  
To develop a track version of the maximal anaerobic running test, 10 sprint runners and 12 distance runners performed the test on a treadmill and on a track. The treadmill test consisted of incremental 20-s runs with a 100-s recovery between the runs. On the track, 20-s runs were replaced by 150-m runs. To determine the blood lactate versus running velocity curve, fingertip blood samples were taken for analysis of blood lactate concentration at rest and after each run. For both the treadmill and track protocols, maximal running velocity (v max), the velocities associated with blood lactate concentrations of 10 mmol x l-1 (v10 mM) and 5 mmol x l(-1) (v5 mM), and the peak blood lactate concentration were determined. The results of both protocols were compared with the seasonal best 400-m runs for the sprint runners and seasonal best 1000-m time-trials for the distance runners. Maximal running velocity was significantly higher on the track (7.57 +/- 0.79 m x s(-1)) than on the treadmill (7.13 +/- 0.75 m x s(-1)), and sprint runners had significantly higher vmax, v10 mM, and peak blood lactate concentration than distance runners (P < 0.05). The Pearson product--moment correlation coefficients between the variables for the track and treadmill protocols were 0.96 (v max), 0.82 (v10 mM), 0.70 (v5 mM), and 0.78 (peak blood lactate concentration) (P < 0.05). In sprint runners, the velocity of the seasonal best 400-m run correlated positively with vmax in the treadmill (r = 0.90, P < 0.001) and track protocols (r = 0.92, P < 0.001). In distance runners, a positive correlation was observed between the velocity of the 1000-m time-trial and vmax in the treadmill (r = 0.70, P < 0.01) and track protocols (r = 0.63, P < 0.05). It is apparent that the results from the track protocol are related to, and in agreement with, the results of the treadmill protocol. In conclusion, the track version of the maximal anaerobic running test is a valid means of measuring different determinants of sprint running performance.  相似文献   

9.
The aim of this study was to estimate the energy contributions in middle-distance running events for male and female university athletes. The oxygen uptake (VO2) response during high-speed running was measured directly during exhaustive treadmill tests. Muscle mass was estimated using anthropometry. Each athlete completed an average of three races over 400 m, 800 m or 1500 m. Five minutes after each race, they provided a blood sample for determination of blood lactate concentration. For each race, energy cost, which was expressed as oxygen equivalents, was calculated as the sum of the aerobic and anaerobic components. The aerobic contribution was calculated as the sum of oxygen stores (2.3 ml O2.kg body mass-1) and total VO2 (based on the VO2 response to treadmill running). The anaerobic contribution was calculated as the sum of the energy available from phosphocreatine stores (37 ml O2.kg muscle mass-1) and the energy from glycolysis (3.0 ml O2.kg body mass-1 per mmol.l-1 increase in blood lactate concentration). For the women, the anaerobic energy contributions for the 400 m, 800 m and 1500 m averaged 62%, 33% and 17%, respectively. For the men, the anaerobic contributions averaged 63%, 39% and 20%, respectively. This information will help coaches and sport scientists to design and implement individualized training programmes.  相似文献   

10.
The aim of this study was to determine which physiological variables predict excellence in middle- and long-distance runners. Forty middle-distance runners (age 23 ± 4 years, body mass 67.2 ± 5.9 kg, stature 1.80 ± 0.05 m, VO(2max) 65.9 ± 4.5 ml · kg(-1) · min(-1)) and 32 long-distance runners (age 25 ± 4 years, body mass 59.8 ± 5.1 kg, stature 1.73 ± 0.06 m, VO(2max) 71.6 ± 5.0 ml · kg(-1) · min(-1)) competing at international standard performed an incremental running test to exhaustion. Expired gas analysis was performed breath-by-breath and maximum oxygen uptake (VO(2max)) and two ventilatory thresholds (VT(1) and VT(2)) were calculated. Long-distance runners presented a higher VO(2max) than middle-distance runners when expressed relative to body mass (P < 0.001, d = 1.18, 95% CI [0.68, 1.68]). At the intensities corresponding to VT(1) and VT(2), long-distance runners showed higher values for VO(2) expressed relative to body mass or %VO(2max), speed and oxygen cost of running (P < 0.05). When oxygen uptake was adjusted for body mass, differences between groups were consistent. Logistic binary regression analysis showed that VO(2max) (expressed as l · min(-1) and ml · kg(-1) · min(-1)), VO(2VT2) (expressed as ml · kg(-0.94) · min(-1)), and speed at VT(2) (v(VT2)) categorized long-distance runners. In addition, the multivariate model correctly classified 84.7% of the athletes. Thus, VO(2max), VO(2VT2), and v(VT2) discriminate between elite middle-distance and long-distance runners.  相似文献   

11.
Abstract

The aims of this study were to examine ground contact characteristics, their relationship with race performance, and the time course of any changes in ground contact time during competitive 800 m and 1500 m races. Twenty-two seeded, single-sex middle-distance races totalling 181 runners were filmed at a competitive athletics meeting. Races were filmed at 100 Hz. Ground contact time was recorded one step for each athlete, on each lap of their race. Forefoot and midfoot strikers had significantly shorter ground contact times than heel strikers. Forefoot and midfoot strikers had significantly faster average race speed than heel strikers. There were strong large correlations between ground contact time and average race speed for the women's events and men’s 1500 m (r = ?0.521 to ?0.623; P < 0.05), whereas the men's 800 m displayed only a moderate relationship (r = ?0.361; P = 0.002). For each event, ground contact time for the first lap was significantly shorter than for the last lap, which might reflect runners becoming fatigued.  相似文献   

12.
As a wide range of values has been reported for the relative energetics of 400-m and 800-m track running events, this study aimed to quantify the respective aerobic and anaerobic energy contributions to these events during track running. Sixteen trained 400-m (11 males, 5 females) and 11 trained 800-m (9 males, 2 females) athletes participated in this study. The participants performed (on separate days) a laboratory graded exercsie test and multiple race time-trials. The relative energy system contribution was calculated by multiple methods based upon measures of race VO2, accumulated oxygen deficit (AOD), blood lactate and estimated phosphocreatine degradation (lactate/PCr). The aerobic/anaerobic energy system contribution (AOD method) to the 400-m event was calculated as 41/59% (male) and 45/55% (female). For the 800-m event, an increased aerobic involvement was noted with a 60/40% (male) and 70/30% (female) respective contribution. Significant (P < 0.05) negative correlations were noted between race performance and anaerobic energy system involvement (lactate/PCr) for the male 800-m and female 400-m events (r = - 0.77 and - 0.87 respectively). These track running data compare well with previous estimates of the relative energy system contributions to the 400-m and 800-m events. Additionally, the relative importance and speed of interaction of the respective metabolic pathways has implications to training for these events.  相似文献   

13.
14.
15.
The neural activation (iEMG) and selected stride characteristics of six male sprinters were studied for 100-, 200-, 300- and 400-m experimental sprints, which were run according to the velocity in the 400 m. Blood lactate (BLa) was analysed and drop jumps were performed with EMG registration at rest and after each sprint. Running velocity (P less than 0.001) and stride length (P less than 0.05) decreased and contact time increased (P less than 0.01) during the 400-m sprint. The increase in contact time was greatest immediately after runs of 100 and 300 m. The peak BLa increased and the rate of BLa accumulation decreased with running distance (P less than 0.001). The height of rise of the centre of mass in the drop jumps was smaller immediately after the 300 m (P less than 0.05) and the 400 m (P less than 0.01) than at rest, and it correlated negatively with peak BLa (r = -0.77, P less than 0.001). The EMG and EMG:running velocity ratio increased with running distance. It was concluded that force generation of the leg muscles had already begun to decrease during the first quarter of the 400-m sprint. The deteriorating force production was compensated for until about 200-300 m. Thereafter, it was impossible to compensate for fatigue and the speed of running dropped. According to this study, fatigue in the 400-m sprint among trained athletes is mainly due to processes within skeletal muscle rather than the central nervous system.  相似文献   

16.
目的:检验采用比赛数据计算高水平游泳运动员临界速度的可行性和有效性,探索高水平游泳运动员临界速度同比变化对中长距离自由泳成绩同比变化的影响,建立临界速度同比变化对高水平游泳运动员长距离自由泳成绩同比变化概率的预测回归模型。方法:收集2011-2018年中长距离自由泳项目(200~1500 m)世界游泳排名Top100的信息,采用距离-时间模型计算临界速度,用线性回归评估临界速度与中长距离游泳项目成绩的关系,使用逻辑回归(logistics)评价临界速度同比变化对成绩同比变化的影响。结果:临界速度可以分别解释200 m、400 m、800 m和1500 m自由泳成绩变化的76.8%、87.2%、90.7%和99.5%。当临界速度同比提高时,长距离项目(800 m和1500 m)成绩同比提高是成绩同比下降的30倍。当临界速度同比提高/下降1%~6%时,长距离项目(800 m和1500 m)成绩同比提高/下降的发生概率约为80%~100%。结论:采用比赛参数(比赛成绩和比赛距离)计算临界速度是可行和有效的;临界速度同比变化百分比(提高/下降)能预测成绩同比变化,是解释长距离自由泳成绩同比变化的关键因素。  相似文献   

17.
Energy system contribution to 1500- and 3000-metre track running   总被引:1,自引:0,他引:1  
The aim of the present study was to quantify the contributions of the aerobic and anaerobic energy systems to 1500- and 3000-m track running events during all-out time-trials performed individually on a synthetic athletic track. Ten 3000-m (8 males, 2 females) and fourteen 1500-m (10 males, 4 females) trained track athletes volunteered to participate in the study. The athletes performed a graded exercise test in the laboratory and two time-trials over 1500 or 3000 m. The contributions of the energy systems were calculated by measures of race oxygen uptake, accumulated oxygen deficit (AOD), race blood lactate concentration, estimated phosphocreatine degradation and some individual muscle metabolite data. The relative aerobic energy system contribution (based on AOD measures) for the 3000 m was 86% (male) and 94% (female), while for the 1500 m it was 77% (male) and 86% (female). Estimates of anaerobic energy expenditure based on blood lactate concentrations, while not significantly different (P > 0.05), were generally lower compared with the AOD measures. In conclusion, the results of the present study conform with some recent laboratory-based measures of energy system contributions to these events.  相似文献   

18.
The aim of the present study was to quantify the contributions of the aerobic and anaerobic energy systems to 1500- and 3000-m track running events during all-out time-trials performed individually on a synthetic athletic track. Ten 3000-m (8 males, 2 females) and fourteen 1500-m (10 males, 4 females) trained track athletes volunteered to participate in the study. The athletes performed a graded exercise test in the laboratory and two time-trials over 1500 or 3000?m. The contributions of the energy systems were calculated by measures of race oxygen uptake, accumulated oxygen deficit (AOD), race blood lactate concentration, estimated phosphocreatine degradation and some individual muscle metabolite data. The relative aerobic energy system contribution (based on AOD measures) for the 3000?m was 86% (male) and 94% (female), while for the 1500?m it was 77% (male) and 86% (female). Estimates of anaerobic energy expenditure based on blood lactate concentrations, while not significantly different (P?>?0.05), were generally lower compared with the AOD measures. In conclusion, the results of the present study conform with some recent laboratory-based measures of energy system contributions to these events.  相似文献   

19.
As a wide range of values has been reported for the relative energetics of 400-m and 800-m track running events, this study aimed to quantify the respective aerobic and anaerobic energy contributions to these events during track running. Sixteen trained 400-m (11 males, 5 females) and 11 trained 800-m (9 males, 2 females) athletes participated in this study. The participants performed (on separate days) a laboratory graded exercsie test and multiple race time-trials. The relative energy system contribution was calculated by multiple methods based upon measures of race [Vdot]O2, accumulated oxygen deficit (AOD), blood lactate and estimated phosphocreatine degradation (lactate/PCr). The aerobic/anaerobic energy system contribution (AOD method) to the 400-m event was calculated as 41/59% (male) and 45/55% (female). For the 800-m event, an increased aerobic involvement was noted with a 60/40% (male) and 70/30% (female) respective contribution. Significant (P <?0.05) negative correlations were noted between race performance and anaerobic energy system involvement (lactate/PCr) for the male 800-m and female 400-m events (r = ? 0.77 and ??0.87 respectively). These track running data compare well with previous estimates of the relative energy system contributions to the 400-m and 800-m events. Additionally, the relative importance and speed of interaction of the respective metabolic pathways has implications to training for these events.  相似文献   

20.
Abstract

The aim of the study was to explore pre-competition training practices of elite endurance runners. Training details from elite British middle distance (MD; 800 m and 1500 m), long distance (LD; 3000 m steeplechase to 10,000 m) and marathon (MAR) runners were collected by survey for 7 days in a regular training (RT) phase and throughout a pre-competition taper. Taper duration was [median (interquartile range)] 6 (3) days in MD, 6 (1) days in LD and 14 (8) days in MAR runners. Continuous running volume was reduced to 70 (16)%, 71 (24)% and 53 (12)% of regular levels in MD, LD and MAR runners, respectively (P < 0.05). Interval running volume was reduced compared to regular training (MD; 53 (45)%, LD; 67 (23)%, MAR; 64 (34)%, P < 0.05). During tapering, the peak interval training intensity was above race speed in LD and MAR runners (112 (27)% and 114 (3)%, respectively, P < 0.05), but not different in MD (100 (2)%). Higher weekly continuous running volume and frequency in RT were associated with greater corresponding reductions during the taper (R = ?0.70 and R = ?0.63, respectively, both P < 0.05). Running intensity during RT was positively associated with taper running intensity (continuous intensity; R = 0.97 and interval intensity; R = 0.81, both P < 0.05). Algorithms were generated to predict and potentially prescribe taper content based on the RT of elite runners. In conclusion, training undertaken prior to the taper in elite endurance runners is predictive of the tapering strategy implemented before competition.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号