首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Our aim was to present a mathematical model of rowing and sculling that allowed for a comparison of oar blade designs. The relative movement between the oar blades and water during the drive phase of the stroke was modelled, and the lift and drag forces generated by this complex interaction were determined. The model was driven by the oar shaft angular velocity about the oarlock in the horizontal plane, and was shown to be valid against measured on-water mean steady-state shell velocity for both a heavyweight men's eight and a lightweight men's single scull. Measured lift and drag force coefficients previously presented by the authors were used as inputs to the model, whichs allowed for the influence of oar blade design on rowing performance to be determined. The commonly used Big Blade, which is curved, and it's flat equivalent were compared, and blade curvature was shown to generate a 1.14% improvement in mean boat velocity, or a 17.1-m lead over 1500 m. With races being won and lost by much smaller margins than this, blade curvature would appear to play a significant role in propulsion.  相似文献   

2.
Abstract

Our aim was to present a mathematical model of rowing and sculling that allowed for a comparison of oar blade designs. The relative movement between the oar blades and water during the drive phase of the stroke was modelled, and the lift and drag forces generated by this complex interaction were determined. The model was driven by the oar shaft angular velocity about the oarlock in the horizontal plane, and was shown to be valid against measured on-water mean steady-state shell velocity for both a heavyweight men's eight and a lightweight men's single scull. Measured lift and drag force coefficients previously presented by the authors were used as inputs to the model, whichs allowed for the influence of oar blade design on rowing performance to be determined. The commonly used Big Blade, which is curved, and it's flat equivalent were compared, and blade curvature was shown to generate a 1.14% improvement in mean boat velocity, or a 17.1-m lead over 1500 m. With races being won and lost by much smaller margins than this, blade curvature would appear to play a significant role in propulsion.  相似文献   

3.
Abstract

Flow around a rowing blade is a very complex phenomenon, involving unsteady three-dimensional flow with violent motion of the free surface. However, in the literature, forces acting on blades are modelled using extreme and dubious simplifications. The aim of the present study was to evaluate the influence of free surface and unsteadiness (two physical characteristics that are commonly neglected when modelling loads on blades) as well as viscous effects. In fact, quasi-static approaches are often used, with no influence of the free surface effects. To conduct this study, computational fluid dynamics is used, supported by experimental results performed with a dedicated device reproducing a simplified rowing stroke in the towing tank. Comparisons show that both free surface flow and unsteadiness must be considered to capture the whole physics of the phenomenon accurately. In contrast, the viscous effects have a very limited influence.  相似文献   

4.
Abstract

The aim of the present study was to find a more optimal blade design for rowing performance than the Big Blade, which has been shown to be less than optimal for propulsion. As well as the Big Blade, a flat Big Blade, a flat rectangular blade, and a rectangular blade with the same curvature and projected area as the Big Blade were tested in a water flume to determine their fluid dynamic characteristics at the full range of angles at which the oar blade might present itself to the water. Similarities were observed between the flat Big Blade and rectangular blades. However, the curved rectangular blade generated significantly more lift in the angle range 0 – 90° than the curved Big Blade, although it was similar between 90 and 180°. This difference was attributed to the shape of the upper and lower edges of the blade and their influence on the fluid flow around the blade. Although the influence of oar blade design on boat speed was not investigated here, the significant increases in fluid force coefficients for the curved rectangular blade suggest that this new oar blade design could elicit a practically significant improvement in rowing performance.  相似文献   

5.
The aim of the present study was to find a more optimal blade design for rowing performance than the Big Blade, which has been shown to be less than optimal for propulsion. As well as the Big Blade, a flat Big Blade, a flat rectangular blade, and a rectangular blade with the same curvature and projected area as the Big Blade were tested in a water flume to determine their fluid dynamic characteristics at the full range of angles at which the oar blade might present itself to the water. Similarities were observed between the flat Big Blade and rectangular blades. However, the curved rectangular blade generated significantly more lift in the angle range 0-90 degrees than the curved Big Blade, although it was similar between 90 and 180 degrees. This difference was attributed to the shape of the upper and lower edges of the blade and their influence on the fluid flow around the blade. Although the influence of oar blade design on boat speed was not investigated here, the significant increases in fluid force coefficients for the curved rectangular blade suggest that this new oar blade design could elicit a practically significant improvement in rowing performance.  相似文献   

6.
The purpose of this investigation was to examine the fluid dynamic characteristics of the two most commonly used oar blades: the Big Blade and the Macon. Scaled models of each blade, as well as a flat Big Blade, were tested in a water flume using a quasi-static method similar to that used in swimming and kayaking research. Measurement of the normal and tangential blade forces enabled lift and drag forces generated by the oar blades to be calculated over the full range of sweep angles observed during a rowing stroke. Lift and drag force coefficients were then calculated and compared between blades. The results showed that the Big Blade and Macon oar blades exhibited very similar characteristics. Hydraulic blade efficiency was not therefore found to be the reason for claims that the Big Blade could elicit a 2% improvement in performance over the Macon. The Big Blade was also shown to have similar characteristics to the flat plate when the angle of attack was below 90 degrees , despite significant increases in the lift coefficient when the angle of attack increased above 90 degrees . This result suggests that the Big Blade design may not be completely optimized over the whole stroke.  相似文献   

7.
Abstract

The purpose of this investigation was to examine the fluid dynamic characteristics of the two most commonly used oar blades: the Big Blade and the Macon. Scaled models of each blade, as well as a flat Big Blade, were tested in a water flume using a quasi-static method similar to that used in swimming and kayaking research. Measurement of the normal and tangential blade forces enabled lift and drag forces generated by the oar blades to be calculated over the full range of sweep angles observed during a rowing stroke. Lift and drag force coefficients were then calculated and compared between blades. The results showed that the Big Blade and Macon oar blades exhibited very similar characteristics. Hydraulic blade efficiency was not therefore found to be the reason for claims that the Big Blade could elicit a 2% improvement in performance over the Macon. The Big Blade was also shown to have similar characteristics to the flat plate when the angle of attack was below 90°, despite significant increases in the lift coefficient when the angle of attack increased above 90°. This result suggests that the Big Blade design may not be completely optimized over the whole stroke.  相似文献   

8.
We present a study of the hydrodynamic characteristics of sea kayak paddles without taking into account the kayaker. We focus on traditional paddles used in the Arctic, one from Greenland and one from the Aleutian Islands. A basic modern European paddle is included in the study for comparison. First the paddle stroke parameters specific to sea kayaking are identified because previous studies were devoted to a competition context. The hydrodynamic force generated by the blade motion is detailed: two terms are identified, one involving the inertia of the water surrounding the blade at the beginning of its motion, and the second term is the classical drag/lift force. Drag and lift force coefficients were measured in a wind tunnel. The data allow computation of the hydrodynamic force during a paddle stroke. The European paddle was shown to be more efficient than the traditional paddles because of its shorter length to width ratio which contributed to a larger inertia effect. However, the force obtained with the traditional paddles better follows the imposed motion by the kayaker so that they are more comfortable and less tiring in the context of long distance trips, as those practiced in sea kayaking.  相似文献   

9.
A model of the motion of a single‐scull rowing hull has been developed and verified against rowing performance data. The model was then used to explore the effect of changes in the cyclic rowing force on the boat speed. The calculations have shown that the shape of the rowing force curve and the proportion of recovery time in the total stroke can have an important effect on the boat speed. It has also been shown that a study of the fluid mechanics of the oar blade would be advantageous in determining whether a reduction in the power wasted can be obtained by changing the ratio of rowing force to normal force.  相似文献   

10.
A study of the forces exerted by an oarsman and the effect on boat speed   总被引:1,自引:0,他引:1  
A model of the motion of a single-scull rowing hull has been developed and verified against rowing performance data. The model was then used to explore the effect of changes in the cyclic rowing force on the boat speed. The calculations have shown that the shape of the rowing force curve and the proportion of recovery time in the total stroke can have an important effect on the boat speed. It has also been shown that a study of the fluid mechanics of the oar blade would be advantageous in determining whether a reduction in the power wasted can be obtained by changing the ratio of rowing force to normal force.  相似文献   

11.
The aim of this study was to assess the effect of the hand’s acceleration on the propulsive forces and the relative contribution of the drag and lift on their resultant force in the separate phases of the front crawl underwater arm stroke. Ten female swimmers swam one trial of all-out 25-m front crawl. The underwater motion of each swimmer’s right hand was recorded using four camcorders and four periscope systems. Anatomical landmarks were digitised, and the propulsive forces generated by the swimmer’s hand were estimated from the kinematic data in conjunction with hydrodynamic coefficients. When the hand’s acceleration was taken into account, the magnitude of the propulsive forces was greater, with the exception of the mean drag force during the final part of the underwater arm stroke. The mean drag force was greater than the mean lift force in the middle part, while the mean lift force was greater than the mean drag force in the final part of the underwater arm stroke. Thus, swimmers should accelerate their hands from the beginning of their backward motion, press the water with large pitch angles during the middle part and sweep with small pitch angles during the final part of their underwater arm stroke.  相似文献   

12.
Abstract

This study assessed muscle recruitment patterns and stroke kinematics during ergometer and on-water rowing to validate the accuracy of rowing ergometry. Male rowers (n = 10; age 21 ± 2 years, height 1.90 ± 0.05 m and body mass 83.3 ± 4.8 kg) performed 3 × 3 min exercise bouts, at heart and stroke rates equivalent to 75, 85 and 95% V?O2peak, on both dynamic and stationary rowing ergometers, and on water. During exercise, synchronised data for surface electromyography (EMG) and 2D kinematics were recorded. Overall muscle activity was quantified by the integration of rmsEMG and averaged for each 10% interval of the stroke cycle. Muscle activity significantly increased in rectus femoris (RF) and vastus medialis (VM) (<0.01), as exercise intensity increased. Comparing EMG data across conditions revealed significantly (P <0.05) greater RF and VM activity during on-water rowing at discrete 10% intervals of stroke cycle. In addition, the drive/recovery ratio was significantly lower during dynamic ergometry compared to on-water (40 ± 1 vs. 44 ± 1% at 95%, <0.01). Results suggest that significant differences exist while comparing recruitment and kinematic patterns between on-water and ergometer rowing. These differences may be due to altered acceleration and deceleration of moving masses on-ergometer not perfectly simulating the on-water scenario.  相似文献   

13.
Modelling the flight of a soccer ball in a direct free kick   总被引:2,自引:0,他引:2  
This study involved a theoretical and an experimental investigation of the direct free kick in soccer. Our aim was to develop a mathematical model of the ball's flight incorporating aerodynamic lift and drag forces to explore this important 'set-play'. Trajectories derived from the model have been compared with those obtained from detailed video analysis of experimental kicks. Representative values for the drag and lift coefficients have been obtained, together with the implied orientation of the ball's spin axis in flight. The drag coefficient varied from 0.25 to 0.30 and the lift coefficient from 0.23 to 0.29. These values, used with a simple model of a defensive wall, have enabled free kicks to be simulated under realistic conditions, typical of match-play. The results reveal how carefully attackers must engineer the dynamics of a successful kick. For a central free kick some 18.3 m (20 yards) from goal with a conventional wall, and initial speed of 25 m x s(-1), the ball's initial elevation must be constrained between 16.5 degrees and 17.5 degrees and the ball kicked with almost perfect sidespin.  相似文献   

14.
对黄胜初于2000年建立的双动力赛艇动力学方程进行矢量推导,结果显示,在操桨过程中人体质心的移动产生无击水动力。据此,认为国际赛艇联合会(FISA)赛艇教练员培训手册(2002年版)中,单动力赛艇动力模型衍生出的三点错误之处。研究认为,国内生物力学界和赛艇界对赛艇动力学及其在训练中的应用存在认识上的误区。应注重回桨技术的研究和训练,降低1桨中拉推桨时间比,提高1桨的划桨效率。  相似文献   

15.
In this study, we investigated the effect of hull dynamics in shallow water on the hydrodynamic performance of rowing shells as well as canoes and kayaks. An approach was developed to generate data in a towing tank using a test rig capable of reproducing realistic speed profiles. The impact of unsteady shallow-water effects on wave-making resistance was examined via experimental measurements on a benchmark hull. The data generated were used to explore the validity of a computational approach developed to predict unsteady shallow-water wave resistance. Comparison of measured and predicted results showed that the computational approach correctly predicted complex unsteady wave-resistance phenomena at low oscillation frequency and speed, but that total resistance was substantially under-predicted at moderate oscillation frequency and speed. It was postulated that this discrepancy arose from unsteady viscous effects. This was investigated via hot-film measurements for a full-scale single scull in unsteady flow in both towing-tank and field-trial conditions. Results suggested a strong link between acceleration and turbulence and demonstrated that the measured real-world viscous-flow behaviour could be successfully reproduced in the tank. Thus a suitable tank-test approach could provide a reliable guide to hull performance characterization in unsteady flow.  相似文献   

16.
Strength, technique, and coordination are crucial to rowing performance, but external interventions such as foot-stretcher set-up can fine-tune technique and optimise power output. For the same resultant force, raising the height of foot-stretchers on a rowing ergometer theoretically alters the orientation of the resultant force vector in favour of the horizontal component. This study modified foot-stretcher heights and examined their instantaneous effect on foot forces and rowing technique. Ten male participants rowed at four foot-stretcher heights on an ergometer that measured handle force, stroke length, and vertical and horizontal foot forces. Rowers were instrumented with motion sensors to measure ankle, knee, hip, and lumbar–pelvic kinematics. Key resultant effects of increased foot-stretcher heights included progressive reductions in horizontal foot force, stroke length, and pelvis range of motion. Raising foot-stretcher height did not increase the horizontal component of foot force as previously speculated. The reduced ability to anteriorly rotate the pelvis at the front of the stroke may be a key obstacle in gaining benefits from raised foot-stretcher heights. This study shows that small changes in athlete set-up can influence ergometer rowing technique, and rowers must individually fine-tune their foot-stretcher height to optimise power transfer through the rowing stroke on an ergometer.  相似文献   

17.
This study involved a theoretical and an experimental investigation of the direct free kick in soccer. Our aim was to develop a mathematical model of the ball's flight incorporating aerodynamic lift and drag forces to explore this important 'set-play'. Trajectories derived from the model have been compared with those obtained from detailed video analysis of experimental kicks. Representative values for the drag and lift coefficients have been obtained, together with the implied orientation of the ball's spin axis in flight. The drag coefficient varied from 0.25 to 0.30 and the lift coefficient from 0.23 to 0.29. These values, used with a simple model of a defensive wall, have enabled free kicks to be simulated under realistic conditions, typical of match-play. The results reveal how carefully attackers must engineer the dynamics of a successful kick. For a central free kick some 18.3 m (20 yards) from goal with a conventional wall, and initial speed of 25 m·s?1, the ball's initial elevation must be constrained between 16.5° and 17.5° and the ball kicked with almost perfect sidespin.  相似文献   

18.
目的:以国家队和赛艇优势省队运动员为测试对象,总结分析我国精英女子赛艇运动员的划桨技术特点。方法:27名运动员参与本研究,利用"BioRow Tel"系统测试五种桨频(20、24、28、32、36桨/分)下的划桨技术,测试参数包括划桨节奏、桨叶轨迹、桨力特征等。结果:拉桨时间百分比随桨频的提高显著提高;入水角、出水角和划幅在中低桨频下非常稳定,但在接近比赛桨频时显著下降;抓水打滑和出水打滑均随桨频的增加而显著增加;与桨力相关的参数对桨频的变化相对不敏感。结论:我国运动员较为注重桨叶入水和拉桨前段,表现出的技术较好,而在拉桨后段特别是桨叶出水阶段暴露出的问题比较大;临近比赛桨频时的技术同中低桨频时相比存在比较明显的下降。训练中要解决好拉桨后段和桨叶出水的问题,并注重提高运动员在比赛桨频时的划桨技术。  相似文献   

19.
Abstract

In rowing, power is inevitably lost as kinetic energy is imparted to the water during push-off with the blades. Power loss is estimated from reconstructed blade kinetics and kinematics. Traditionally, it is assumed that the oar is completely rigid and that force acts strictly perpendicular to the blade. The aim of the present study was to evaluate how reconstructed blade kinematics, kinetics, and average power loss are affected by these assumptions. A calibration experiment with instrumented oars and oarlocks was performed to establish relations between measured signals and oar deformation and blade force. Next, an on-water experiment was performed with a single female world-class rower rowing at constant racing pace in an instrumented scull. Blade kinematics, kinetics, and power loss under different assumptions (rigid versus deformable oars; absence or presence of a blade force component parallel to the oar) were reconstructed. Estimated power losses at the blades are 18% higher when parallel blade force is incorporated. Incorporating oar deformation affects reconstructed blade kinematics and instantaneous power loss, but has no effect on estimation of power losses at the blades. Assumptions on oar deformation and blade force direction have implications for the reconstructed blade kinetics and kinematics. Neglecting parallel blade forces leads to a substantial underestimation of power losses at the blades.  相似文献   

20.
Effect of stroke rate on the distribution of net mechanical power in rowing   总被引:1,自引:1,他引:0  
The aim of this study was to assess the effect of manipulating stroke rate on the distribution of mechanical power in rowing. Two causes of inefficient mechanical energy expenditure were identified in rowing. The ratio between power not lost at the blades and generated mechanical power (P(rower)) and the ratio between power not lost to velocity fluctuations and P(rower) were used to quantify efficiency (e(propelling) and e(velocity) respectively). Subsequently, the fraction of P(rower) that contributes to the average velocity (chi(boat)) was calculated (e(net)). For nine participants, stroke rate was manipulated between 20 and 36 strokes per minute to examine the effect on the power flow. The data were analysed using a repeated-measures analysis of variance. Results indicated that at higher stroke rates, P(rower), chi(boat), e(propelling), and e(net) increase, whereas e(velocity) decreases (P < 0.0001). The decrease in e(velocity) can be explained by a larger impulse exchange between rower and boat. The increase in e(propelling) can be explained because the work at the blades decreases, which in turn can be explained by a change in blade kinematics. The increase in e(net) results because the increase in e(propelling) is higher than the decrease in e(velocity). Our results show that the power equation is an adequate conceptual model with which to analyse rowing performance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号