首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
正笔者在利用几何画板研究有心圆锥曲线的切线时发现一个简洁有趣的性质,现介绍如下:命题1自圆C_1:x~2+y~2=a~2+b~2上任一点P向椭圆C_2:x~2/a~2+y~2/b~2=1(a,b0)引两条切线,则这两条切线互相垂直.证明:设P点的坐标为(x_0,y_0),自这一点向椭圆C_2引的两切线分别为l_1和l_2.(1)当切线的斜率存在且不为0时,设过P的切线方程为y-y_0=k(x-x_0),由y-y_0=k(x-x_0),x~2/a~2+y~2/b~2=1得(b~2+k~2a~2)x~2+  相似文献   

2.
已知斜率为m的椭圆切线有两条。这两条平行切线除了具有一般椭圆切线的性质以外,还具有一些特殊的性质。运用这些性质可以很方便地解决有关实际问题。设椭圆方程为x~2/a~2+y~2/b~2=1则有性质1:椭圆的斜率为m的两切线方程为:y=mx±(m~2a~2+b~2)~(1/2)其间距离为 d=(m~a~2+b~2)~(1/2)/m~2+1~(1/2) 性质2:椭圆两切线平行的充分必要条件是二切点关于椭圆中心对称。性质3:椭圆的任一焦点到两平行切线  相似文献   

3.
我们知道,与椭圆x~2/a~2+y~2/b~2=1相切于(X_0y_0)点的切线方程是x_0x/a~2+y_0y/b~2=1 ①我们把直线y=kx+(m≠O) ②变形为 -ka~2x/m/a~2+b~2/m~y/b~2=1 ③如果直线②与椭圆也相切于(x_0,y_0)点,则①和③表示同一条直线,所以有 x_0=-ka~2/m,y_0=b~2/m (Ⅰ) 用同样的方法,可类似地求出圆x~2+y~2=r~2双曲线x~2/a~2-y~2/b~2=1和抛物线y~2=2px与  相似文献   

4.
1 例题及解答例如图1,AB 是过椭圆 x~2/a~2 y~2/b~2=1(a>b>0)的左焦点 F 的一条动弦,AB 的斜率 k∈[3/4,4/3]并且3a~2-4b~2=0记 AF/FB=λ,求λ的取值范围.解法1:由3a~2-4b~2=0=b~2=(3/4)a~2,所以椭圆方程为x~2/a~2 4y~2/3a~2=1,即3x~2 4y~2=3a~2.(*)又∵c~2=a~2-b~2=(1/4)a~2,∴c=(1/2)a.则 A((-1/2)a λmcosθ,λmsinθ),B((-1/2)a-mcosθ,-msinθ),  相似文献   

5.
一阶导数与二次曲线弦中点间存在着一种内在联系,这种联系为解决二次曲线中点弦一类问题开辟了一条较为简捷的路径.本文就以定理形式揭示这种联系并列举应用. 定理:椭圆x~2/a~2 y~2/b~2=1的以斜率为k的一组平行弦中点轨迹方程是x~2/a~2 yy_x~'/b~2=0(※)(|x|≤a,|y|≤b)其中y_x~'就是平行弦的斜率k,它等于直线(※)与椭圆交点处切线的斜率. 证明:设点P(x_0,y_0)是以k为斜率的弦P_1P_2的中点,点P_1(x_1,y_1),P_2(x_2,y_2)  相似文献   

6.
<正>我们知道,双曲线(x~2)/(a~2)-(y~2)/(b~2)=1的渐近线方程为y=±(b/a)x.一般地,还有下面的一些结论:(1)双曲线(x~2)/(a~2)-(y~2)/(b~2)=λ(λ>0)的渐近线方程亦为y=±bax,即xa±yb=0,就是(x~2)/(a~2)-(y~2)/(b~2)=0.(2)双曲线(x~2)/(a~2)-(y~2)/(b~2)=λ(λ<0)的渐近线方程亦为(x~2)/(a~2)-(y~2)/(b~2)=0,故双曲线(x~2)/(a~2)-(y~2)/(b~2)=λ(λ≠0)的渐近线方程为  相似文献   

7.
一、从联赛到自主招生,一脉相承题1(2010年全国高中数学联赛江西省预赛试题)已知椭圆(x~2)/(a~2)+(y~2)/(b~2)=1(a>b>0)和圆x~2+y~2=b~2,经过椭圆上的动点M作圆的两条切线,切点分别为P,Q,若直线PQ在x轴、y轴上的截距分别为m,n,证明:(a~2)/(n~2)+(b~2)/(m~2)=(a~2)/(b~2).题2(2014年华约试题)已知椭圆(x~2)/(a~2)+(y~2)/(b~2)=1(a>b>0)和圆x~2+y~2=b~2,经过椭圆上的动点M作圆的两条切线,切点分别为P,Q,直线PQ与坐标轴的交点分别为E,F,求AEOF面积的最小值.  相似文献   

8.
学习二次曲线经常会遇到求弦的中点轨迹方程一类问题,解决这类问题一般借助于韦达定理和中点坐际公式,有时计算较为复杂。本文介绍较为简便的求导方法。定理1 椭圆 x~2/a~2+y~1/b~2=1的以斜率为 k  相似文献   

9.
定义:连结椭圆上任意两点的线段叫弦.过椭圆中心的弦叫直径.类似地可定义双曲线的直径.如图1,平行于直径CD的弦的中点的轨迹AB和直径CD叫互为共轭直径.类似地可定义双曲线的共轭直径. 定理1 已知AB、CD为椭圆x~2/a~2 y~2/b~2=1的一对共轭直径,其斜率分别为k_(AB)、K_(CD),那么K_(AB)·K_(CD)=-b~2/a~2. 略证:如图1,设平行弦EF簇的斜率为k(即K_(CD)),则平行弦EF簇的方程为 y=kx t(t为参数).① 又椭圆方程为 x~2/a~2 y~2/b~2=1. ② ①代入②整理得 (a~2k~2 b~2)x~2 2a~2tkx a~2(t~2-b~2)=0. ③ 由韦达定理,得x_1 x_2=-(2a~2tk/a~2k~2 b~2). 设M(x′,y′)是EF的中点,则 x′=1/2(x_1 x_2)=-(a~2tk/a~2k~2 b~2) ④ 点M在EF上,则y′=kx′ t. ⑤ 由④、⑤消去参数t得 y′=-b~2/a~2k x′. ∵k_(AB)=k_(OM)=-(b~2/a~2k). ∴k_(AB)·k_(CD)=-(b~2/a~2k)·k=-(b~2/a~2). 推论1 AB是椭圆x~2/a~2 y~2/b~2=1的任意一条弦,P为AB的中点,O为椭圆的中心,则 K_(AB)·K_(OP)=-(b~2/a~2).  相似文献   

10.
1.若遇a≤x~2 y~2≤b(a,b∈R~ ),可作代换x=t·cosφ,y=tsinφ,其中a~(1/2)≤t≤b~(1/2) 例1 已知1≤x~2 y~2≤2,求w=x~2 xy y~2的最值. 解:∵1≤x~2 y~2≤2,∴设x=tcosθ,y=tsinθ,其中1≤t≤2~(1/2),∴w=t~2cos~2θ t~2cosθsinθ t~2sin~2θ=t~2·(1 (1/2)sin2θ),而(1/2)≤1 sin2θ≤(3/2),∴(1/2)≤w≤3. 2.若遇b~2x~2 a~2y~2=a~2b~2(a,b∈R~ ),可作代换x=acosθ,y=bsinθ(此处要注意解析几何中椭圆、双曲线的参数方程的应用) 例2 已知x、y满足x~2 4y~2=4,求w=x~2 2xy 4y~2 x 2y的最值.  相似文献   

11.
高中解析几何课本有这样一类题目:已知双曲线的渐近线方程,再附有其他已知条件,求此双曲线方程.若能运用共渐近线的双曲线系来解此类问题,常能带来方便,本文试图探讨这一问题. 双曲线x~2/a~2-y~2/b~2=1和它的共轭双曲线x~2/a~2-y~2/b~2=1有共同的渐近线x/a±y/b=0. 双曲线系x~2/a~2-y~2/b~2=λ(λ≠0)的渐近线方程也是x/a±y/b=0.  相似文献   

12.
题:求双曲线的两条互相垂直的切线的交点轨迹。解设双曲线的方程为x~2/a~2-y~2/b~2=1由于双曲线互相垂直的切线其斜率一定存在,且不等于零,故可设其斜率分别为k和-1/k,则两条切线方程分别为 y=kx±((a~2k~2)-b~2)~(1/2),①和 y=-(1/k)x±((k~2/a~2)-b~2)~(1/2)。  相似文献   

13.
平面上的椭圆、双曲线、抛物线的标准方程为x~2/a~2±y~2/b~2=1、y~2=2px。在其曲线上的点(x_0,y_0)处的切线方程可表示为x_0x/a~2±y_0y/b~2=1、y_0y=p(x x_0)的形式。这种形式与原曲线方程有明显的对应关系,便于记忆,并可以推广到平面上高次曲线。为了便于讨论,我们把平面直角坐标系中3次曲线方程的一般形式表示为  相似文献   

14.
第一试 一、选择题 1.方程1-lgsinx=cosx的实根的个数是( ). (A)0.(B)1 (C)2 (D)大于2 2.x~2/a~2 y~2/b~2=1的切线交x轴于A、交y  相似文献   

15.
<正>众所周知,椭圆与双曲线的第一定义与第二定义相似,性质也有很多类似的,然而双曲线却独有渐近线,而椭圆x~2/a~2+y~2/b~2=1(a>b>0)与双曲线x~2/a~2-y~2/b~2=1(a>0,b>0)的渐近线y=±b/ax又有什么紧密的关系呢?本文就以焦点在x轴上的椭圆C:x~2/a~2+y~2/b~2=  相似文献   

16.
命题1设椭圆x~2/a~2 y~2/b~2=1(a>b>0)(或双曲线x~2/a~2-y~2/b~2=1(a>0,b>0))(一焦点为F (c,0)在点P(非长轴或实轴顶点)处的切线交y轴于点Q,过点Q作直线FP的垂线,垂足为  相似文献   

17.
两个常见命题:命题1 设 A、B 是椭圆x~2/a~2 y~2/b~2=1长轴的两个端点,CD 是与 AB 垂直的弦,则直线AD 与直线 BC 交点的轨迹方程是x~2/a~2-y~2/b~2=1.命题2 设 A_1、A_2是双曲线x~2/a~2-y~2/b~2=1实轴的两个端点,P_1P_2是与 A_1A_2垂直的弦,  相似文献   

18.
性质1:已知椭圆方程(x~2)/(a~2) (y~2)/(b~2)=1(a>b>0),AB是过中心的弦,C为椭圆上不同于A、B的动点,在点A处的切线为l_1,在C点处的切线为l_2,两切线交于E点,l_(CB)与l_1交于点D,则DE=EA.  相似文献   

19.
经过椭圆焦点的直线与椭圆相交于 M、N 两点,线段 MN 叫做椭圆的焦点弦.它的长度公式如下:MN 是椭圆 b~2x~2 a~2y~2=a~2b~2(a>b>0)的焦点弦,若 MN 的斜率为k,则|MN|=(2ab~2(k~2 1))/(a~2k~2 b~2)(1)MN 是椭圆 b~2x~2 a~2y~2=a~2b~2(a>b>0)的焦点弦,若 MN 的倾斜角为θ,椭圆的半焦距为 c,则  相似文献   

20.
曲线系方程所揭示的是一类曲线的共性。用曲线系解题,简洁而干脆。略举数例,以供参考。例1 设圆系方程x~2+y~2-2axcosθ-2bysinθ=0(a>0,b>0,a>b,a,b是定常数,θ是未定常数),求圆系中最大圆与最小圆公共弦的方程。解:对原方程配方:(x-acosθ)+ (y-bsinθ)~2=a~2cos~2θ+b~2sin~2θ,可知圆心轨迹方程为x~2/a~2+y~2/b~2=1,易知,最大圆方程:(x±a)~2+y~2=a~2,最小圆方程:x~2+(y±b)~2=b~2。得圆系方程;[(x±a)~2+y~2-a~2]+λ[x~2+(y±b)~2-b~2]=0。令λ=-1。便得所求的最大圆与最小圆的公共弦方程ax±by=0。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号