首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
本文介绍椭圆与双曲线的一个有趣性质,并说明其应用. 性质 1 设P点是椭圆b2x2+a2y2+a2b2(a>b>0)上异于长轴端点的任一点,F1,F2为其焦点,记∠F1PF2=θ,则|PF1|·|PF2|=2b2/1+cosθ 简证:由椭圆定义有|PF1|+|PF2|=2a (1) 在△PF1F2中,由余弦定理有 |PF1|2+|PF2|2-2|PF1|·|PF2|·cosθ=4e2 (2) (1)2-(2)化简得 |PF1|·|PF2|= 2b2/1+cosθ 性质2 将性质1中的 b2x2+a2y2=a2b2改为b2x2-a2y2=a2b2(a>0,b> 0),其余不  相似文献   

2.
本文介绍椭圆与双曲线的一个有趣性质,并说明其应用. 性质 1 设P点是椭圆b2x2+a2y2=a2b2(a>b>0)上异于长轴端点的任一点,F1、F2为其焦点,记∠F1PF2=θ,则|PF1|·|PF2|=2b2/1+cosθ 简证:由椭圆定义有|PF1|·|PF2|=2a (1) 在△PF1F2中,由余弦定理有|PF1|2+|PF2|2-2|PF1|·|PF2|cosθ=4c2 (2) (1)2-(2)化简得  相似文献   

3.
《考试说明》要求考生:1掌握椭圆、双曲线、抛物线的定义、标准方程及其几何性质和椭圆的参数方程;2掌握圆锥曲线的初步应用.下面介绍圆锥曲线基础试题的考点和解析.考点1 求椭圆坐标的取值范围例1 (2000年新课程卷高考题)椭圆x29+y24=1焦点为F1和F2,点P为椭圆上的动点.当∠F1PF2为钝角时,点P的横坐标的取值范围.解析:设P(x0,y0)是曲线x2a2±y2b2=1上的一点,则|PF1|=|a+ex0|,|PF2|=|a-ex0|(e为离心率,F1、F2为左、右焦点).运用焦半径公式可简捷地解决与焦点三角形有关的问题.解:a=3,b=2,c=5.设P(x,y),由焦半径公式知|PF1|=3+53x.|…  相似文献   

4.
在椭圆和双曲线的焦点三角形中,我们易推出其面积公式: 命题1 设F1、F2是椭圆x2/a2+y2/b2=1(a>b>0)的两个焦点,P是异于长轴端点的椭圆上一点,若∠F1PF2=θ,则△PF1F2的面积S=b2tanθ/2(Ⅰ).  相似文献   

5.
各种数学资料中 ,经常出现如下一类问题 :点 M为圆锥曲线上一动点 ,求它到圆锥曲线的一个焦点 F和平面上一定点 A的距离和的最值 .大多数学生对这类问题感到困难 ,不知如何入手 .本文利用圆锥曲线的定义巧妙地求出这类问题 .1 椭圆、双曲线、抛物线中的有关结论1.1 椭圆结论 1 设椭圆 x2a2 + y2b2 =1(a >b>0 )的左、右焦点分别为 F1 、F2 ,平面上一定点 Q(x0 ,y0 ) ,M为椭圆上任意一点 .(1)定点 Q(x0 ,y0 )在椭圆内部 (即 x20a2 + y20b2<1) ,则 | MF2 | + | MQ|的最小值是 2 a -| QF1 | ;最大值是 2 a + | QF1 | .(2 )定点 Q(x0 ,…  相似文献   

6.
笔者最近对椭圆和双曲线焦点三角形做了些研究 ,得到了两个十分有趣的重要的轨迹 ,现说明如下 ,供读者参考 .定义 以椭圆或双曲线上一点和两焦点组成的三角形叫焦点三角形 .1 椭圆焦点三角形内心轨迹定理 1 设P是椭圆b2 x2 +a2 y2 =a2 b2 (a >b >0 )上的一点 ,E( -c,0 )、F(c,0 )分别是左、右焦点 ,e是椭圆的离心率 ,则△PEF的内心轨迹是椭圆 x2c2 +y2( eb1 +e) 2=1 ,且该椭圆长轴与原椭圆长轴之比等于原椭圆的离心率e.证明 :设A (x ,y)是△PEF的内心 ,PA交x轴于点B ,如图1 .由三角形内角平分线性质知|BA||AP|=|EB||EP|=|FB||F…  相似文献   

7.
椭圆x2/a2 y2/b2=1(a>b>0)中除长轴两端点外的任一点P(x1,y1)与两焦点F1(-c,0)、F2(c,0)所组成的三角形PF1 F2叫做焦点三角形 .焦半径|PF1|=a ex1,|PF2|=a-ex1.焦点三角形具有不少有益的结论,而对这些结论的证明亦颇有启迪性;并且这些结论在解题中也能起到不少帮助. 1.△PF1F2的周长为定值. 这个结论显而易见.由椭圆定义知|PF1| |PF2|=2a,而|F1F2|=2c,因此这个定值为2a 2c.  相似文献   

8.
椭圆x2/a2+y2/b2=1(a>b>0)中除长轴两端点外的任一点P(x1,y1)与两焦点F1(-c,0)、F2(c,0)所组成的三角形PF1F2叫做焦点三角形.焦半径| PF1 |=a+ex1,|PF2 |=a-ex1.焦点三角形具有不少有益的结论,而对这些结论的证明亦颇有启迪性;并且这些结论在解题中也能起到不少帮助.  相似文献   

9.
本文探索了椭圆、双曲线焦半径与焦半径夹角的关系,得到如下两个结论. 定义圆锥曲线上一点与其焦点的连线段叫做焦半径. 定理1 P(x0,y0)是椭圆x2/a2 y2/b2=1(a>b>0)上一点,F1(-c,0),F2(c,0)是左右焦点,设|PF1|=r1,|PF2|=r2,∠F1PF2=θ,则 2b2/1 cosθ=r1r2,且tanθ/2=c|y0|/b2. 证:如图,在△F1PF2中有  相似文献   

10.
题目 (2014年湖北理数第9题)已知F1,F2是椭圆和双曲线的公共焦点,P是它们的一个公共点,且∠F1PF2=π/3,则椭圆和双曲线的离心率的倒数之和的最大值为() A.4√3/3 B.2√3/3 C.3 D.2 解析:不妨设椭圆和双曲线的方程分别为x2/a212+t2/b12=1和x2/a22-y2/b22=1,其中:a1>b1>0,a2 >0,b2 >0,且椭圆和双曲线的离心率分别为e1和e2.记|PF1 |=m,| PF2 |=n,则由椭圆和双曲线的定义知:|m+n|=2a1①,| m-n |=2a2②.由①②得:m2+n2=2a2+ 2a2,mn=a12-a22③.在△F1 PF2中,应用余弦定理得:cos∠ F1PF2=m2+n2-(2c)2/2mn =1/2,即m2+ n2-4c2=mn.  相似文献   

11.
问题 :已知椭圆 x22 5 +y216 =1的左右焦点分别是 F1 ,F2 ,点 M在椭圆上 ,且 M到两焦点的距离之积为 16 ,则 M的坐标为    .题目本身并不难 ,由椭圆定义知 |MF1 |+|MF2 |=2 a=10 ,又由条件知 |MF1 |·|MF2 |=16 ,于是 |MF1 |=2 ,|MF2 |=8或|MF1 |=8,|MF2 |=2 .又椭圆的焦点到长轴两个端点的距离恰为 2与 8,因此 M是长轴的两个端点之一 ,于是 M的坐标应是 (- 5 ,0 )或 (5 ,0 ) .一个疑问 :长轴的两个端点固然满足条件 ,但除了这两个端点以外还有没有其它满足条件的点呢 ?上述解法并没有给出确切的答案 ,因此严格地说上述解法是…  相似文献   

12.
刘宜兵 《数学教学通讯》2006,(4):F0003-F0003
我们知道:过圆外一点向圆引两条切线,这两条切线的长度相等并且该点与圆心的连线平分以圆心为顶点两切点为端点的角.仿照这个性质我们推广到其他圆锥曲线(椭圆、双曲线、抛物线)可得以下优美结论.定理1:过椭圆xa21 by22=1(a>0,b>0)外一点P(m,n)向椭圆引两切线PP1,PP2,F是椭圆的任一个焦点,则①|PP|1|P·F||P2P2|=b2m2a2 b2a2n2;②PF平分∠P1FP2.图1证明:如图1,设P1(x1,y1),P2(x2,y2),显然直线P1P2方程为:mxa2 nby2=1,由mxa2 nby2=1x2a2 yb22=1可得:(a2n2 b2m2)x2-2a2b2mx a4(b2-n2)=0则x1 x2=a2n22a2 b2bm2m2,x1x2=aa24(nb22 -b2nm…  相似文献   

13.
<正>椭圆x2/a2+y2/b2=1(a>b>0)中,以两焦点F1、F2和椭圆上一点P为顶点的三角形叫做焦点三角形,其三边PF1、PF2、F1F2满足PF1+PF2=2a,F1F2=2c.若设∠F1PF2=θ,则其面积S△PF1F2=b2tanθ/2.  相似文献   

14.
所谓椭圆焦点三角形是指椭圆上任一点与其两焦点构成的三角形 .本文以椭圆 x2a2 + y2b2 =1  (a >b>0 )为例 ,利用其定义及性质来证明△F1PF2 的十一个性质 .记P(x0 ,y0 ) ,∠F1PF2 =γ ,∠PF1F2 =α ,∠PF2 F1=β ,c =a2 -b2 ,e =ca ,则有以下性质 :性质 1 △F1PF2 的周长为 2a + 2c .证明略 .性质 2  |PF1| =a +ex0 ,|PF2 | =a -ex0 .证明略 .性质 3 △PF2 F1的面积S =b2 tan γ2 .证明 设 |PF1| =m ,|PF2 | =n ,则△PF2 F1的面积S =12 mnsinγ .由椭圆定义得m +n =2a .又由余弦定理得4c2 =m2 +n2 - 2mncosγ=(m +n) 2 -…  相似文献   

15.
题椭圆x2/a2+y2/b2=1(a>b>0)的两焦点是F1、F2,M为椭圆上与F1、F2不共线的任意一点,I为△MF1F2的内心,延长MI交线段F1F2于点N,则|MI|:|IN|的值等于( )(13届“希望杯”高二培训)  相似文献   

16.
在高中数学的知识结构中,椭圆与双曲 线都属于圆锥曲线,它们在性质上有许多统 一性与相似性.它们具有一种对偶性质,通过 类比两者的性质、特征,使问题解决方向明确 下来,进而使问题解决简单化.对它们的深入 研究可以培养学生的类比能力. 1 对偶性质的发现 类型 椭圆 双曲线比较项 定义 | MF1 | | MF2 |= 2a | MF1 | ? | MF2 |= 2a 方程 x2 y2=1 x2 ? y2=1 a2 b2 a2 b2 轴 长轴2a,短轴2b 实轴2a,…  相似文献   

17.
设P(x0,y0)是椭圆x2/a2+y2/b2=1(a>b>0)上的点,F1、F2为其左、右焦点.由椭圆第二定义易得|PF1|=a+ex0,|PF2|=a-ex0(e为离心率).这就是椭圆的焦半径公式,运用它可解决与焦点三角形有关的问题. 1.求坐标取值范围  相似文献   

18.
张建 《甘肃教育》2010,(15):61-61
题目:已知点M是双曲线x^2/4-y^2=1上的一点,F1.F2为两焦点,若∠F1MF2=90&#176;,求△F1MF2的面积. 分析:由双曲线x^2/4-y^2=1,知a=2,b=1,c=√5.设|MF1|=t1,|MF2|=t2.由椭圆的定义得|MF1|-|MF2|4,即|t1-t2|=4,(t1-t2)^2=4^2,t1^2+t2^2-2t1t2=16.  相似文献   

19.
错在哪里     
1题已知椭圆 x29 y25 =1 ,点A(1 ,2 )在椭圆内 ,点F是椭圆的左焦点 ,点M是椭圆上任意一点 ,求|MA| |MF|的最小值。解 由方程知a =3 ,c=2 ,e=23 ,左准线l:x =-92 。设M在l上的射影为N ,由圆锥曲线的统一定义 ,|MF|=23 |MN|,|MA| |MF|=|MA| 23 |MN|,所以当M、A、N共线时 ,取最小值。将 y =2代入椭圆方程得x =-3 55 ,此时 |MA| 23 |MN|=(1 3 55 ) 23 (92 -3 55 ) =4 55 ,所以|MA| |MF|的最小值为 4 55 。解答错了 !错在哪里 ?事实上 ,|MA| 23 |MN|=23 (32 |MA| |MN|) ,其中 |MA|的系数是 32 ,而 |MN|的系数是1 ,可见 |MA…  相似文献   

20.
1.(2000年上海高考题)设F1、F2为椭圆x2/9+y2/4=1的两个焦点,P为椭圆上的一点,已知P、F1、F2是一个直角三角形的三个顶点,且|PF1|>|PF2|,求|PF1|:|PF2|的值. [当∠PF1F2=90°时为7/2,当∠F1PF2=90°时为2]  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号