首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Research suggests that spatial ability may predict success in complex disciplines including anatomy, where mastery requires a firm understanding of the intricate relationships occurring along the course of veins, arteries, and nerves, as they traverse through and around bones, muscles, and organs. Debate exists on the malleability of spatial ability, and some suggest that spatial ability can be enhanced through training. It is hypothesized that spatial ability can be trained in low-performing individuals through visual guidance. To address this, training was completed through a visual guidance protocol. This protocol was based on eye-movement patterns of high-performing individuals, collected via eye-tracking as they completed an Electronic Mental Rotations Test (EMRT). The effects of guidance were evaluated using 33 individuals with low mental rotation ability, in a counterbalanced crossover design. Individuals were placed in one of two treatment groups (late or early guidance) and completed both a guided, and an unguided EMRT. A third group (no guidance/control) completed two unguided EMRTs. All groups demonstrated an increase in EMRT scores on their second test (P < 0.001); however, an interaction was observed between treatment and test iteration (P = 0.024). The effect of guidance on scores was contingent on when the guidance was applied. When guidance was applied early, scores were significantly greater than expected (P = 0.028). These findings suggest that by guiding individuals with low mental rotation ability “where” to look early in training, better search approaches may be adopted, yielding improvements in spatial reasoning scores. It is proposed that visual guidance may be applied in spatial fields, such as STEMM (science, technology, engineering, mathematics and medicine), surgery, and anatomy to improve student's interpretation of visual content. Anat Sci Educ. © 2018 American Association of Anatomists.  相似文献   

2.
Individuals with an aptitude for interpreting spatial information (high mental rotation ability: HMRA) typically master anatomy with more ease, and more quickly, than those with low mental rotation ability (LMRA). This article explores how visual attention differs with time limits on spatial reasoning tests. Participants were assorted to two groups based on their mental rotation ability scores and their eye movements were collected during these tests. Analysis of salience during testing revealed similarities between MRA groups in untimed conditions but significant differences between the groups in the timed one. Question‐by‐question analyses demonstrate that HMRA individuals were more consistent across the two timing conditions (κ = 0.25), than the LMRA (κ = 0.013). It is clear that the groups respond to time limits differently and their apprehension of images during spatial problem solving differs significantly. Without time restrictions, salience analysis suggests LMRA individuals attended to similar aspects of the images as HMRA and their test scores rose concomitantly. Under timed conditions however, LMRA diverge from HMRA attention patterns, adopting inflexible approaches to visual search and attaining lower test scores. With this in mind, anatomical educators may wish to revisit some evaluations and teaching approaches in their own practice. Although examinations need to evaluate understanding of anatomical relationships, the addition of time limits may induce an unforeseen interaction of spatial reasoning and anatomical knowledge. Anat Sci Educ 10: 528–537. © 2017 American Association of Anatomists.  相似文献   

3.
Spatial ability is an important factor in learning anatomy. Students with high scores on a mental rotation test (MRT) systematically score higher on anatomy examinations. This study aims to investigate if learning anatomy also oppositely improves the MRT‐score. Five hundred first year students of medicine (n = 242, intervention) and educational sciences (n = 258, control) participated in a pretest and posttest MRT, 1 month apart. During this month, the intervention group studied anatomy and the control group studied research methods for the social sciences. In the pretest, the intervention group scored 14.40 (SD: ± 3.37) and the control group 13.17 (SD: ± 3.36) on a scale of 20, which is a significant difference (t‐test, t = 4.07, df = 498, P < 0.001). Both groups show an improvement on the posttest compared to the pretest (paired samples t‐test, t = 12.21/14.71, df = 257/241, P < 0.001). The improvement in the intervention group is significantly higher (ANCOVA, F = 16.59, df = 1;497, P < 0.001). It is concluded that (1) medical students studying anatomy show greater improvement between two consecutive MRTs than educational science students; (2) medical students have a higher spatial ability than educational sciences students; and (3) if a MRT is repeated there seems to be a test effect. It is concluded that spatial ability may be trained by studying anatomy. The overarching message for anatomy teachers is that a good spatial ability is beneficial for learning anatomy and learning anatomy may be beneficial for students' spatial ability. This reciprocal advantage implies that challenging students on spatial aspects of anatomical knowledge could have a twofold effect on their learning. Anat Sci Educ 6: 257–262. © 2013 American Association of Anatomists.  相似文献   

4.
The use of mixed reality in science education has been increasing and as such it has become more important to understand how information is learned in these virtual environments. Spatial ability is important in many learning contexts, but especially in neuroanatomy education where learning the locations and spatial relationships between brain regions is paramount. It is currently unclear what role spatial ability plays in mixed reality learning environments, and whether it is different compared to traditional physical environments. To test this, a learning experiment was conducted where students learned neuroanatomy using both mixed reality and a physical plastic model of a brain (N = 27). Spatial ability was assessed and analyzed to determine its effect on performance across the two learning modalities. The results showed that spatial ability facilitated learning in mixed reality (β = 0.21, P = 0.003), but not when using a plastic model (β = 0.08, P = 0.318). A non-significant difference was observed between the modalities in terms of knowledge test performance (d = 0.39, P = 0.052); however, mixed reality was more engaging (d = 0.59, P = 0.005) and learners were more confident in the information they learned compared to using a physical model (d = 0.56, P = 0.007). Overall, these findings suggest that spatial ability is more relevant in virtual learning environments, where the ability to manipulate and interact with an object is diminished or abstracted through a virtual user interface.  相似文献   

5.
Interest in spatial ability has grown over the past few decades following the emergence of correlational evidence associating spatial aptitude with educational performance in the fields of science, technology, engineering, and mathematics. The research field at large and the anatomy education literature on this topic are mixed. In an attempt to generate consensus, a meta-analysis was performed to objectively summarize the effects of spatial ability on anatomy assessment performance across multiple studies and populations. Relevant studies published within the past 50 years (1969–2019) were retrieved from eight databases. Study eligibility screening was followed by a full-text review and data extraction. Use of the Mental Rotations Test (MRT) was required for study inclusion. Out of 2,450 screened records, 15 studies were meta-analyzed. Seventy-three percent of studies (11 of 15) were from the United States and Canada, and the majority (9 of 15) studied professional students. Across 15 studies and 1,245 participants, spatial ability was weakly associated with anatomy performance (rpooled = 0.240; CI at 95% = 0.09, 0.38; P = 0.002). Performance on spatial and relationship-based assessments (i.e., practical assessments and drawing tasks) was correlated with spatial ability, while performance on assessments utilizing non-spatial multiple-choice items was not correlated with spatial ability. A significant sex difference was also observed, wherein males outperformed females on spatial ability tasks. Given the role of spatial reasoning in learning anatomy, educators are encouraged to consider curriculum delivery modifications and a comprehensive assessment strategy so as not to disadvantage individuals with low spatial ability.  相似文献   

6.
7.
Spatial visualization, the ability to mentally rotate three-dimensional (3D) images, plays a significant role in anatomy education. This study examines the impact of technical drawing exercises on the improvement of spatial visualization and anatomy education in a Neuroscience course. First-year medical students (n = 84) were randomly allocated into a control group (n = 41) or art-training group (n = 43). Variables including self-reported artistic drawing ability, previous technical drawing experience, or previous anatomy laboratory exposure were gathered. Participants who self-identified as artistic individuals were equally distributed between the two groups. Students in the art-training group attended four 1-hour sessions to solve technical drawing worksheets. All participants completed two Mental Rotations Tests (MRT), which were used to assess spatial visualization. Data were also collected from two neuroscience written examinations and an anatomical “tag test” practical examination. Participants in the art-training and control groups improved on the MRT. The mean of written examination two was significantly higher (P = 0.007) in the art-training group (12.95) than the control group (11.48), and higher (P = 0.027) in those without technical drawing experience (12.44) than those with (11.00). The mean of the anatomical practical was significantly higher (P = 0.010) in those without artistic ability (46.24) than those with (42.00). These results suggest that completing technical drawing worksheets may aid in solving anatomy-based written examination questions on complex brain regions, but further research is needed to determine its implication on anatomy practical scores. These results propose a simple method of improving spatial visualization in anatomy education.  相似文献   

8.
A student's own body provides an often disregarded site of knowledge production and corporeal wisdom. Learning via cognitive processes anchored in physical movement and body awareness, known as embodied learning, may aid students to visualize structures and understand their functions and clinical relevance. Working from an embodied learning perspective, the current article evaluates the use of an offline physical learning tool (Anatomical Glove Learning System; AGLS) for teaching hand anatomy for clinical application in medical students. Two student samples (N1 = 105; N2 = 94) used the AGLS in two different ways. In the first sample, the AGLS was compared to a traditional approach using hand bones, models and prosected specimens. Secondly, the AGLS and traditional approach were combined. The evaluation consisted of three outcomes: short-term learning (post-test), medium-term applications (mock-objective structured clinical examination, MOSCE), and longer-term assessment (objective structured clinical examination, OSCE). Findings from the first sample indicated no significant differences between the AGLS and traditional laboratory groups on short- (F(1,78) = 0.036, P = 0.849), medium- (F(1,50) = 0.743, P = 0.393), or longer-term (F(1,82) = 0.997, P = 0.321) outcomes. In the second sample using the AGLS in combination with a traditional approach was associated with significantly better short-term post-test scores (F(2,174) = 5.98, P = 0.003) than using the AGLS alone, but demonstrated no effect for long-term OSCE scores. These results suggest an embodied learning experience alone does not appear to be advantageous to student learning, but when combined with other methods for studying anatomy there are learning gains.  相似文献   

9.
A large proportion of science major college students are unable to translate even simple sentences into algebraic equations. Given the following sentence: There are six times as many students (S) as professors (P) at this university, most students write the following equation: 6S = P, referred to as the reversal error. In order to overcome the reversal error students need to operate in a hypothetico-deductive manner, i.e., performing a hypothetical operation that makes the group of professors six times larger than it really is (S = 6P). The objective of this study is to investigate the relation between student ability to translate sentences into equations, equations into sentences, and student performance in the following variables: formal operational reasoning, proportional reasoning, and introductory freshmen-level chemistry course. The results obtained show that as the student ability to translate sentences into equations and equations into sentences increases, their mean scores in Chemistry I, formal operational, and proportional reasoning increases. This study has found support for the hypothesis that students who lack formal operational reasoning skills (hypothetico-deductive reasoning) may experience more problems in the translation of algebraic equations.  相似文献   

10.
Currently, medical education context poses different challenges to anatomy, contributing to the introduction of new pedagogical approaches, such as computer-assisted learning (CAL). This approach provides insight into students' learning profiles and skills that enhance anatomy knowledge acquisition. To understand the influence of anatomy CAL on spatial abilities, a study was conducted. A total of 671 medical students attending Musculoskeletal (MA) and Cardiovascular Anatomy (CA) courses, were allocated to one of three groups (MA Group, CA Group, MA + CA Group). Students' pre-training and post-training spatial abilities were assessed through Mental Rotations Test (MRT), with scores ranging between 0-24. After CAL training sessions, students' spatial abilities performance improved (9.72 ± 4.79 vs. 17.05 ± 4.57, P < 0.001). Although male students in both MA Group and CA Group show better baseline spatial abilities, no sex differences were found after CAL training. The improvement in spatial abilities score between sessions (Delta MRT) was correlated with Musculoskeletal Anatomy training sessions in MA Group (r = 0.333, P < 0.001) and MA + CA Group (r = 0.342, P < 0.001), and with Cardiovascular Anatomy training sessions in CA Group (r = 0.461, P = 0.001) and MA + CA Group (r = 0.324, P = 0.001). Multiple linear regression models were used, considering the Delta MRT as dependent variable. An association of Delta MRT to the amount of CAL training and the baseline spatial abilities was observed. The results suggest that CAL training in anatomy has positive dose-dependent effect on spatial abilities.  相似文献   

11.
The purpose of this study was to investigate the relationship between factors believed to contribute to the formation of environmental attitudes by college nonscience majors. Key relationships addressed were the effects of a university environmental studies course on (a) environmental attitudes, (b) the amount of factual information that is brought to bear on an environmental attitude decision (defensibility), and (c) the linkages between the affective and the cognitive domains of freshman and sophomore students. When compared to the control group, the students who attended an environmental studies class did not significantly change their attitudes, but they did exhibit increases in their total [F(3, 132) = 5.91, p < 0.01] and count [F(3, 132) = 4.86, p < 0.01] levels of defensibility. These findings corroborate work performed by Kinsey (1978) and Kinsey and Wheatley (1980, 1984). In addition, students in the environmental studies course who had higher cognitive reasoning scores were more prone to increase defensibility [F(6, 129) = 3.78, p < 0.01]. These data imply a linkage between cognitive and affective domains in the environmental attitude decision-making process.  相似文献   

12.
In the anatomical sciences, e‐learning tools have become a critical component of teaching anatomy when physical space and cadaveric resources are limited. However, studies that use empirical evidence to compare their efficacy to visual‐kinesthetic learning modalities are scarce. The study examined how a visual‐kinesthetic experience, involving a physical skeleton, impacts learning when compared with virtual manipulation of a simple two‐dimensional (2D) e‐learning tool, A.D.A.M. Interactive Anatomy. Students from The University of Western Ontario, Canada (n = 77) participated in a dual‐task study to: (1) investigate if a dual‐task paradigm is an effective tool for measuring cognitive load across these different learning modalities; and (2) to assess the impact of knowledge recall and spatial ability when using them. Students were assessed using knowledge scores, Stroop task reaction times, and mental rotation test scores. Results demonstrated that the dual‐task paradigm was not an effective tool for measuring cognitive load across different learning modalities with respect to kinesthetic learning. However, our study highlighted that handing physical specimens yielded major, positive impacts on performance that a simple commercial e‐learning tool failed to deliver (P < 0.001). Furthermore, students with low spatial ability were significantly disadvantaged when they studied the bony joint and were tested on contralateral images (P = 0.046, R = 0.326). This suggests that, despite limbs being mirror images, students should be taught the anatomy of, as well as procedures on, both sides of the human body, enhancing the ability of all students, regardless of spatial ability, to take anatomical knowledge into the clinic and perform successfully. Anat Sci Educ 10: 570–588. © 2017 American Association of Anatomists.  相似文献   

13.
Most Piagetian formal operational reasoning tasks show horizontal decalage; that is, subjects pass certain tasks and fail others that have the same logical structure. The study reported here analyzes the importance of individual difference variables, as postulated by the neo-Piagetian theory of Pascual-Leone, in explaining subject performance in formal reasoning. A sample of 72 freshman students were administered a test of formal reasoning having 20 items of different types of reasoning, and the tests of the individual difference variables. Results obtained from multiple regression analyses show that Pascual-Leone's structural M-capacity (Ms) is the most consistent predictor of success in the different formal reasoning tasks, followed by Witkin's cognitive style, and to a much lesser degree Raven's progressive matrices, and Pascual-Leone's functional M-capacity (Mf). It was found that in the total score on the 20 items of formal reasoning, Ms accounted for 23.3% of the variance (R = 0.483, F = 6.39, p = 0.014) and Witkin's Group Embedded Figures Test, increased the multiple R significantly (F = 7.77, p = 0.007) and accounted for 7.6% of the variance. Mf and the Raven test did not make a significant contribution to the regression equation. Correlation coefficients among most of the items having the same reasoning pattern but different content are generally low but statistically significant (p < 0.01). Intercorrelations among items having the same formal reasoning pattern and content are fairly high (p < 0.001). These results emphasize the importance of individual difference variables: information-processing capacity (Pascual-Leone) and oversensitivity to potentially misleading information (Witkin). It is suggested that in order to understand student performance in formal reasoning tasks, we should expect horizontal decalages as a rule and not the exception, as Piaget had postulated. Educational implications are drawn.  相似文献   

14.
Spatial ability (SA) is the cognitive capacity to understand and mentally manipulate concepts of objects, remembering relationships among their parts and those of their surroundings. Spatial ability provides a learning advantage in science and may be useful in anatomy and technical skills in health care. This study aimed to assess the relationship between SA and anatomy scores in first- and second-year medical students. The training sessions focused on the analysis of the spatial component of objects' structure and their interaction as applied to medicine; SA was tested using the Visualization of Rotation (ROT) test. The intervention group (n = 29) received training and their pre- and post-training scores for the SA tests were compared to a control group (n = 75). Both groups improved their mean scores in the follow-up SA test (P < 0.010). There was no significant difference in SA scores between the groups for either SA test (P = 0.31, P = 0.90). The SA scores for female students were significantly lower than for male students, both at baseline and follow-up (P < 0.010). Anatomy training and assessment were administered by the anatomy department of the medical school, and examination scores were not significantly different between the two groups post-intervention (P = 0.33). However, participants with scores in the bottom quartile for SA performed worse in the anatomy questions (P < 0.001). Spatial awareness training did not improve SA or anatomy scores; however, SA may identify students who may benefit from additional academic support.  相似文献   

15.
A concern on the level of anatomy knowledge reached after a problem‐based learning curriculum has been documented in the literature. Spatial anatomy, arguably the highest level in anatomy knowledge, has been related to spatial abilities. Our first objective was to test the hypothesis that residents are interested in a course of applied anatomy after a problem‐based learning curriculum. Our second objective was to test the hypothesis that the interest of residents is driven by innate higher spatial abilities. Fifty‐nine residents were invited to take an elective applied anatomy course in a prospective study. Spatial abilities were measured with a redrawn Vandenberg and Kuse Mental Rotations Test in two (MRT A) and three (MRT C) dimensions. A need for a greater knowledge in anatomy was expressed by 25 residents after a problem‐based learning curriculum. MRT A and C scores obtained by those choosing (n = 25) and not choosing (n = 34) applied anatomy was not different (P = 0.46 and P = 0.38, respectively). Percentage of residents in each residency program choosing applied anatomy was different [23 vs. 31 vs. 100 vs. 100% in Family Medicine, Internal Medicine, Surgery, and Anesthesia, respectively; P < 0.0001]. The interest of residents in applied anatomy was not driven by innate higher spatial abilities. Our applied anatomy course was chosen by many residents because of training needs rather than innate spatial abilities. Future research will need to assess the relationship of individual differences in spatial abilities to learning spatial anatomy. Anat Sci Ed 2:107–112, 2009. © 2009 American Association of Anatomists.  相似文献   

16.
A three‐dimensional appreciation of the human body is the cornerstone of clinical anatomy. Spatial ability has previously been found to be associated with students' ability to learn anatomy and their examination performance. The teaching of anatomy has been the subject of major change over the last two decades with the reduction in time spent on dissection and greater use of web‐based and computer‐based resources. In this study, we examine whether the relationship between spatial ability and performance in anatomy examinations is sustained in a contemporary curriculum. A comparison of students' performance in a series of tests of spatial ability to their anatomy examination scores in biomedical sciences course exhibited only weak association (r = 0.145 and P = 0.106). This has implications for the use of spatial ability as a predictor of success in introductory subjects in the teaching of anatomy. Anat Sci Educ 7: 289–294. © 2013 American Association of Anatomists.  相似文献   

17.
This study investigated demographic characteristics such as type of university attended, course of study and gender as determinants of duration of unemployment among university graduates in Nigeria. Data were collected from 1 451 employed university graduates in 300 firms in Nigeria. Results showed a significant difference between duration of unemployment and course of study (F(6,1444) = 17.84; p < 0.05) with graduates of Engineering and Medicine having the least duration of unemployment. Significant differences also existed between duration of unemployment and the type of university attended (F(2,1448) = 5.50; p < 0.05). Unemployment period was significantly shorter for graduates of private universities compared to those from public universities. However, gender differences did not significantly affect unemployment period (t0.05 = -0.211; p > 0.05). One major policy implication of the findings is that entrepreneurial skills and initiative should become major concerns of higher education institutions to facilitate employability of graduates who will increasingly be called upon not only as successful applicants but also and above all as job creators.  相似文献   

18.
Sex differences favoring males in spatial abilities have been known by cognitive psychologists for more than half a century. Spatial abilities have been related to three‐dimensional anatomy knowledge and the performance in technical skills. The issue of sex differences in spatial abilities has not been addressed formally in the medical field. The objective of this study was to test an a priori hypothesis of sex differences in spatial abilities in a group of medical graduates entering their residency programs over a five‐year period. A cohort of 214 medical graduates entering their specialist residency training programs was enrolled in a prospective study. Spatial abilities were measured with a redrawn Vandenberg and Kuse Mental Rotations Tests in two (MRTA) and three (MRTC) dimensions. Sex differences favoring males were identified in 131 (61.2%) female and 83 (38.8%) male medical graduates with the median (Q1, Q3) MRTA score [12 (8, 14) vs. 15 (12, 18), respectively; P < 0.0001] and MRTC score [7 (5, 9) vs. 9 (7, 12), respectively; P < 0.0001]. Sex differences in spatial abilities favoring males were demonstrated in the field of medical education, in a group of medical graduates entering their residency programs in a five‐year experiment. Caution should be exerted in applying our group finding to individuals because a particular female may have higher spatial abilities and a particular male may have lower spatial abilities. Anat Sci Educ 6: 368–375. © 2013 American Association of Anatomists.  相似文献   

19.
For over 60 years, longitudinal research on tens of thousands of high ability and intellectually precocious youth has consistently revealed the importance of spatial ability for hands-on creative accomplishments and the development of expertise in science, technology, engineering, and mathematical (STEM) disciplines. Yet, individual differences in spatial ability are seldom assessed for educational counseling and selection. Students especially talented in spatial visualization relative to their status on mathematical and verbal reasoning are particularly likely to be underserved by our educational institutions. Evidence for the importance of assessing spatial ability is reviewed and ways to utilize information about individual differences in this attribute in learning and work settings are offered. The literature reviewed stresses the importance of spatial ability in real-world settings and constitutes a rare instance in the social sciences where more research is not needed. What is needed is the incorporation of spatial ability into talent identification procedures and research on curriculum development and training, along with other cognitive abilities harboring differential—and incremental—validity for socially valued outcomes beyond IQ (or, g, general intelligence).  相似文献   

20.
This study, the purpose of which is to determine an efficient instructional design for different levels of spatial abilities, investigates: (1) the main effects of visual treatments in simulation environments on comprehension and the transfer of chemistry knowledge and (2) the interaction effects of the visual treatments and the learners’ spatial abilities. Two hundred and fifty-seven middle school students were randomly assigned to two experimental conditions. The results indicated: (1) a significant main effect of the treatment condition for both comprehension (p < 0.001) and transfer (p < 0.005) tests, where the treatment group performed better than the control group and (2) a significant interaction effect (p < 0.05) between the instructional treatment conditions and level of spatial ability for the comprehension test: Low spatial ability learners performed better in the treatment group than in the control group, whereas high spatial ability learners performed similarly regardless of the instructional conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号