首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
The various psychological dimensions of professional identity formation (PIF) are an important aspect of the study course for undergraduate medical students. Anatomical learning environments have been repeatedly shown to play a critical role in forming such an identity; however, relevance of PIF during sonoanatomical training remains underexplored. At the end of their basic anatomy studies, third-semester medical students took part in a four-day block course on anatomy and imaging. Anatomical content was revised in small groups using peer teaching and imaging methods, including one hour of hands-on sonoanatomy sessions each day. On-site sonoanatomy was identified as an excellent format to support students' transition from the pre-clinical to clinical phase as medical experts-to-be. Students enjoyed practical exercises and the clinical input, which increased their interest in the medical profession and their academic studies. This study further examined the effects of the transition into an online-only format, necessitated by the current Covid-19 pandemic. A comparison was made between the quantitative and qualitative evaluation data, and the written results of examinations of several on-site (n = 1096, mean age = 22.4 years ± 2.18), and online-only cohorts (n = 230, mean age = 22.6 years ± 2.21). The online-only transition led to a reduction of all PIF-related variables measured, losing identity-related variables, increasing students' stress levels, and reducing their long-term academic performance. Together, this study demonstrates presence of PIF in undergraduate sonoanatomy teaching, and cautions against the uncritical online-only substitution of hands-on learning environments.  相似文献   

2.
Professionalism and ethics have gained widespread recognition as competencies to be fulfilled, taught, and assessed within medical education. The role of the anatomy course in developed nations has evolved over time and now encompasses multiple domains, including knowledge, skills, and the inculcation of professionalism and ethics. The Medical Council of India recently recommended the integration of professionalism teaching in undergraduate medical curricula. The authors investigated whether the initial orientation lectures and instructions given by faculty at the outset of undergraduate medical anatomy courses throughout India served a “hidden curriculum” regarding professionalism practices, and whether these orientation messages could serve as an early exposure to medical professionalism and ethics for medical students. An online survey was carried out among 102 anatomy faculty members across India requesting details about specific professionalism protocols and instructions regarding behavior in the dissection hall that are routinely given to preclinical students, as well as the importance that they placed on professional behavior. It was found that most faculty members regularly instruct students regarding expected behavior during the anatomy course, including dissection practices. These instructions stress attributes of professionalism like humanism, accountability, and honesty. However, there needs to be a more concentrated effort by educators to prohibit such unprofessional practices like dissection hall photography, and better information is required regarding biomedical waste disposal. Despite the absence of clear guidelines for professionalism teaching in medical education in India, the existing framework of anatomy education provides an opportunity to introduce the concept of professionalism to the first‐year medical student. This opportunity may provide an early foundation for designing a professionalism‐integrated curriculum. Anat Sci Educ 10: 433–443. © 2017 American Association of Anatomists.  相似文献   

3.
Teaching time dedicated to anatomy education has been reduced at many medical schools around the world, including Nova Medical School in Lisbon, Portugal. In order to minimize the effects of this reduction, the authors introduced two optional, semester‐long cadaveric dissection courses for the first two years of the medical school curriculum. These courses were named Regional Anatomy I (RAI) and Regional Anatomy II (RAII). In RAI, students focus on dissecting the thorax, abdomen, pelvis, and perineum. In RAII, the focus shifts to the head, neck, back, and upper and lower limbs. This study prospectively analyzes students' academic achievement and perceptions within the context of these two, newly‐introduced, cadaveric dissection courses. Students' satisfaction was assessed anonymously through a questionnaire that included items regarding students' perception of the usefulness of the courses for undergraduate teaching, as well as with regards to future professional activity. For each of the three academic years studied, the final score (1 to 20) in General Anatomy (GA), RAI, and RAII was on average 14.26 ± 1.89; 16.94 ± 1.02; 17.49 ± 1.01, respectively. The mean results were lower in GA than RAI or RAII (P < 0.001). Furthermore, students who undertook these courses ranked them highly with regards to consolidating their knowledge of anatomy, preparing for other undergraduate courses, and training for future clinical practice. These survey data, combined with data on participating students' academic achievement, lend strong support to the adoption of similar courses as complementary and compulsory disciplines in a modern medical curriculum. Anat Sci Educ 10: 127–136. © 2016 American Association of Anatomists.  相似文献   

4.
Problem‐based learning (PBL) has been introduced to medical schools around the world and has increasingly become a popular pedagogical technique in Asian countries since 1990. Gross anatomy is a fundamental basic science course in virtually all medical training programs, and the methods used to teach it are under frequent scrutiny and revision. Students often struggle with the vast collection of new terms and complex relationships between structures that they must learn. To help students with this process, our department teaches separate systemic and regional anatomy courses, the latter in a PBL format. After three years of using PBL in our regional anatomy course, we have worked out a set of effective instructions that we would like to share with other medical schools. We report here evidence that our clinical PBL approach stimulates students' interest in learning and enhances anatomy education in a way that can foster better practices in our future medical work force. Anat Sci Educ. © 2010 American Association of Anatomists.  相似文献   

5.
The utilization of bedside ultrasound by an increasing number of medical specialties has created the need for more ultrasound exposure and teaching in medical school. Although there is a widespread support for more vertical integration of ultrasound teaching throughout the undergraduate curriculum, little is known about whether the quality of ultrasound teaching differs if performed by anatomists or clinicians. The purpose of this study is to compare medical students' evaluation of ultrasound anatomy teaching by clinicians and anatomists. Hands‐on interactive ultrasound sessions were scheduled as part of the gross anatomy course following principles of adult learning and instructional design. Seven teachers (three anatomists and four clinicians) taught in each session. Before each session, anatomists were trained in ultrasound by clinicians. Students were divided into groups, rotated teachers between sessions, and completed evaluations. Results indicated students perceived the two groups as comparable for all factors except for knowledge organization and the helpfulness of ultrasound for understanding anatomy (P < 0.001). However, results from unpaired samples t‐tests demonstrated a nonstatistically significant difference between the groups within each session for both questions. Moreover, students' test performance for both groups was similar. This study demonstrated that anatomists can teach living anatomy using ultrasound with minimal training as well as clinicians, and encourage the teaching of living anatomy by anatomists in human anatomy courses using ultrasound. Repeating this study at a multicenter level is currently being considered to further validate our conclusion. Anat Sci Educ 7: 340–349. © 2013 American Association of Anatomists.  相似文献   

6.
Anatomy education provides students with opportunities to learn structure and function of the human body, to acquire professional competencies such as teamwork, interpersonal skills, self-awareness, and to reflect on and practice medical ethics. The fulfillment of this wide potential can present challenges in courses that are part of an integrated curriculum and shorter than traditional courses. This new reality, together with students' increasing concern about the stresses within medical education, led to efforts at Harvard Medical School to implement practical steps toward an optimal learning environment in anatomy. These were based on core elements of ethical anatomy education and principles of trauma-informed care. Anatomy is conceptualized here as the “first clinical discipline,” with relational interactions between anatomical educators, medical students, and body donors/patients. Essential prerequisites for the implementation of this work were support by the medical school leadership, open partnership between engaged students and faculty, faculty coordination, and peer-teaching. Specific interventions included pre-course faculty development on course philosophy and invitations to students to share their thoughts on anatomy. Student responses were integrated in course introductions, combined with a pre-dissection laboratory visit, an introductory guide, and a module on the history and ethics of anatomy. During the course, team-building activities were scheduled, and self-reflection encouraged, for example, through written exercises, and elective life-body drawing. Students' responses to the interventions were overall positive, but need further evaluation. This first attempt of a systematic implementation of an optimal learning environment in anatomy led to the identification of areas in need of adjustment.  相似文献   

7.
Pre‐clinical anatomy curricula must provide medical students with the knowledge needed in a variety of medical and surgical specialties. But do physicians within specialties agree about what anatomical knowledge is most important in their practices? And, what is the common core of anatomical knowledge deemed essential by physicians in different specialties? Answers to these questions would be useful in designing pre‐clinical anatomy courses. The primary aim of this study was to assess the importance of a human gross anatomy course by soliciting the opinions of physicians from a range of specialties. We surveyed 93 physicians to determine the importance of specific anatomical topics in their own practices. Their responses were analyzed to assess variation in intra‐ and inter‐departmental attitudes toward the importance of anatomy. Nearly all of the topics taught in the course were deemed important by the clinicians as a group, but respondents showed little agreement on the rank order of importance of anatomical topics. Overall, only medical imaging received high importance by nearly all respondents, and lower importance was attached to embryology and lymphatic anatomy. Our survey data, however, also suggested distinct hierarchies in the importance assigned to anatomical topics within specialties. Given that physicians view the importance of anatomy differently, we suggest that students revisit anatomy through a vertically integrated curriculum tailored to provide specialty‐specific anatomical training to advanced students based on their areas of clinical interest. Integration of medical imaging into pre‐clinical anatomy courses, already underway in many medical schools, is of high clinical relevance. Anat Sci Educ 7: 251–261. © 2013 American Association of Anatomists.  相似文献   

8.
Ultrasound (US) can enhance anatomy education, yet is incorporated into few non‐medical anatomy programs. This study is the first to evaluate the impact of US training in gross anatomy for non‐medical students in the United States. All 32 master's students enrolled in gross anatomy with the anatomy‐centered ultrasound (ACUS) curriculum were recruited. Mean Likert ratings on pre‐ and post‐course surveys (100% response rates) were compared to evaluate the effectiveness of the ACUS curriculum in developing US confidence, and gauge its impact on views of US. Post‐course, students reported significantly higher (P < 0.001) mean confidence ratings in five US skills (pre‐course versus post‐course mean): obtaining scans (3.13 ±1.04 versus 4.03 ±0.78), optimizing images (2.78 ±1.07 versus 3.75 ±0.92), recognizing artifacts (2.94 ±0.95 versus 3.97 ±0.69), distinguishing tissue types (2.88 ±0.98 versus 4.09 ±0.69), and identifying structures (2.97 ±0.86 versus 4.03 ±0.59), demonstrating the success of the ACUS curriculum in students with limited prior experience. Views on the value of US to anatomy education and to students' future careers remained positive after the course. End‐of‐semester quiz performance (91% response rate) provided data on educational outcomes. The average score was 79%, with a 90% average on questions about distinguishing tissues/artifacts, demonstrating positive learning outcomes and retention. The anatomy‐centered ultrasound curriculum significantly increased confidence with and knowledge of US among non‐medical anatomy students with limited prior training. Non‐medical students greatly value the contributions that US makes to anatomy education and to their future careers. It is feasible to enhance anatomy education outside of medical training by incorporating US. Anat Sci Educ 10: 348–362. © 2016 American Association of Anatomists.  相似文献   

9.
The debate surrounding the use of cadavers in teaching anatomy has focused almost exclusively on the pedagogic role of cadaver dissection in medical education. The aim of this study was to explore the wider aspects of a body bequest program for teaching and research into gross anatomy in a University setting. A retrospective audit was undertaken on body donation and the use of cadaver specimens for teaching and research at our institution between 1876 and 2009. The body bequest program, first established in 1943, now receives more than 40 donations per year. In addition to the medical course, nine other University degrees and courses currently use cadaver specimens for gross anatomy; four of these are research degrees and the remainder undergraduate degrees and courses. The use of cadaver specimens by non‐University groups has also increased, particularly during the past decade, such that there are now 16 different groups using cadaver specimens for instructional courses; most of these are professional medical courses. The use of cadavers for both research and teaching may encourage a more evidence‐based approach to clinical anatomy. This unique audit, spanning more than a century of anatomy education within a single University Medical School, highlights the utility of a robust body bequest program and the wide range of students and health professionals who interact with this precious resource. Anat Sci Educ 2:234–237, 2009 © 2009 American Association of Anatomists.  相似文献   

10.
Changes in medical education have affected both curriculum design and delivery. Many medical schools now use integrated curricula and a systemic approach, with reduced hours of anatomy teaching. While learning anatomy via dissection is invaluable in educational, professional, and personal development, it is time intensive and supports a regional approach to learning anatomy; the use of prosections has replaced dissection as the main teaching method in many medical schools. In our graduate‐entry medical degree, we use an integrated curriculum, with prosections to teach anatomy systemically. However, to not exclude dissection completely, and to expose students to its additional and unique benefits, we implemented a short “Dissection Experience” at the beginning of Year 2. Students attended three two‐hour anatomy sessions and participated in dissection of the clinically relevant areas of the cubital fossa, femoral triangle, and infraclavicular region. This activity was voluntary and we retrospectively surveyed all students to ascertain factors influencing their decision of whether to participate in this activity, and to obtain feedback from those students who did participate. The main reasons students did not participate were previous dissection experience and time constraints. The reasons most strongly affecting students' decisions to participate related to experience (lack of previous or new) and new skill. Students' responses as to the most beneficial component of the dissection experience were based around practical skills, anatomical education, the learning process, and the body donors. We report here on the benefits and practicalities of including a short dissection experience in a systemic, prosection‐based anatomy course. Anat Sci Educ 6: 225–231. © 2013 American Association of Anatomists.  相似文献   

11.
Innovations in undergraduate medical education, such as integration of disciplines and problem based learning, have given rise to concerns about students' knowledge of anatomy. This article originated from several studies investigating the knowledge of anatomy of students at the eight Dutch medical schools. The studies showed that undergraduate students uniformly perceived deficiencies in their anatomical knowledge when they started clinical training regardless of their school's didactic approach. A study assessing students' actual knowledge of clinical anatomy revealed no relationship between students' knowledge and the school's didactic approach. Test failure rates based on absolute standards set by different groups of experts were indicative of unsatisfactory levels of anatomical knowledge, although standards differed markedly between the groups of experts. Good test performance by students seems to be related to total teaching time for anatomy, teaching in clinical context, and revisiting anatomy topics in the course of the curriculum. These factors appeared to outweigh the effects of disciplinary integration orwhether the curriculum was problem‐based or traditional. Anat Sci Ed 2008. © 2008 American Association of Anatomists.  相似文献   

12.
As human cadavers are widely used in basic sciences, medical education, and other training and research venues, there is a real need for experts trained in anatomy and dissection. This article describes a program that gives individuals interested in clinical and basic sciences practical experience working with cadavers. Participants are selected through an open application process and attend sessions focused on anatomical terminology, gross anatomy and radiography, and some of the educational applications of human cadavers. Dissection skills are honed during an intensive, two‐day cadaver dissection and orthopedic workshop. Participants communicate the knowledge they gain through table‐side discussions, reflect upon the experience during a memorial service, and submit written program evaluations. Additionally, the dissection and preparation of cadaveric materials accomplished in this course are used in the medical school gross anatomy course during the next academic year. From 2004 through 2008, the annual number of applicants increased from 40 to 167, and the number of participants increased from 25 to 43 per year. Program participants have represented diverse ethnic, educational, and professional backgrounds. Feedback from participants has been remarkably positive, including comments on the large amount of learning that takes place during the sessions, the positive impact the program has had on career choice, and the desire for program expansion. This program, which could be replicated at other institutions, teaches anatomy, prepares cadaveric prosections for teaching and training others, and encourages participants to pursue careers in anatomical and biomedical sciences. Anat Sci Educ 3: 77–82, 2010. © 2010 American Association of Anatomists.  相似文献   

13.
在对J师范大学四个师范专业学生的专业志向、学习兴趣、课程设置、教学内容、教学方法、高师教师现状进行问卷调查和访谈调查过程中,发现师范教育中存在着诸多问题:专业理想不明,职业规划欠妥;专业情意匮乏,教育人格缺失;课程结构失衡,专业技能欠缺;教学方法单调,教学效果不佳。要促进师范生教师专业素质的培养,必须重视专业信念教育,加强职业规划指导;加强专业情意涵养,重视教育人格培养;优化教育课程结构,注重专业技能培养;创新多元教学方式,注重实践性教学指导,从根本上促进师范生教师素养的提升。  相似文献   

14.
While several innovative pedagogical practices have been developed and implemented in anatomy education since the onset of the coronavirus disease 2019 (Covid-19) pandemic, considering the value of in-person undergraduate dissection remains crucial. In this commentary, a human dissection course at the University of Toronto is used as an example to highlight the value of dissection for undergraduate learners in non-professional programs. In-person dissection allows for real life, anatomical variation, and supports the advancement of students' conceptual knowledge of the human body and visual–spatial abilities. Direct involvement with dissection during undergraduate training also provides students with an opportunity to practice and refine non-technical skills, such as communication and collaboration, while simultaneously promoting the development of students' professional identity formation. Further, dissection is a practical, hands-on experience that can provide students with insight into potential career aspirations related to anatomy and the health professions. It is suggested that as institutions veer from traditional pedagogical practices and evaluate how to best move forward post-pandemic, it is imperative that the value of undergraduate dissection is considered among new innovations in the field of anatomy.  相似文献   

15.
拓展训练是一种通过体验、分享、总结,达到提升心理素质的体验式学习。对高职院校中的贫困学生群体开展拓展训练能够促进其身心健康发展、提高个人执行能力、完善人格、提升人际交往能力。高职院校通过设置分阶段、分层次的拓展训练课程体系,设计有针对性的拓展训练课程,建立个体的跟踪式教学模式,设计针对不同专业和职业的拓展训练课程,有利于加强高职院校贫困学生心理素质教育。  相似文献   

16.
Massive open online courses (MOOCs) are designed as stand‐alone courses which can be accessed by any learner around the globe with only an internet‐enabled electronic device required. Although much research has focused on the enrolment and demographics of MOOCs, their impact on undergraduate campus‐based students is still unclear. This article explores the impact of integrating an anatomy MOOC in to the anatomy curriculum of a year 1 medical degree program at the University of Leeds, United Kingdom. The course did not replace any teaching that was already being delivered, and was used to supplement this teaching to support the students' consolidation and revision. Analysis of student feedback indicates a high level of usage, with evidence to suggest that female learners may have approached the course in a more personalized manner. Although the video based resources and quizzes were greatly appreciated as learning tools, significant evidence suggests the students did not engage, or were inclined to engage, with the discussion fora. Furthermore, a significant majority of students did not want the MOOC to replace the existing teaching they received. Given the feedback provided, this research suggests that although the student population believe there to be value in having access to MOOC material, their role as replacements to campus‐based teaching is not supported. Details regarding the enrolment and engagement of the general public with the MOOC during the two runs are also documented, with the suggestion that graduates employed in the healthcare sector were the primary users of the course. Anat Sci Educ 10: 53–67. © 2016 American Association of Anatomists.  相似文献   

17.
Many basic scientists including anatomists are currently involved in decisions related to revisions of the undergraduate medical curriculum. Integration is a common theme in many of these decisions. As described by Harden, integration can occur along a multistep continuum from independent, discipline‐based courses to a completely interdisciplinary curriculum. For anatomy, each derivative of curricular integration can be shown to involve progressive disruptions of the temporal and topographical relationship between organ systems in a body region, of the temporal relationship with other courses in a harmonized curriculum, and of the relationships between components of organ systems when integration is implemented in thematic curricula. Drawing from our experience teaching in various types of integrated medical curricula, we encourage readers to proceed cautiously with their curricular decisions because each one can have gains and losses that may impact learning in the new format. Anat Sci Educ. © 2013 American Association of Anatomists.  相似文献   

18.
目前,高师美术教育重专业技能、轻教育理论;重专业性、轻师范性;定位不当,与基础教育存在错位、缺乏良好的接触与沟通.高师美术教育要适应和引领基础教育美术课程改革,必须改变高师美术教育传统的教学模式,激发学生学习美术的兴趣;调整课程内容,减小专业基础课的比例,增设与基础教育联系的课程,加强人文知识的学习;突出师范性,加强教育理论的学习和教育实践;提高教师教育教学水平,增强教师敬业精神.  相似文献   

19.
Basic and superior reasoning skills are woven into the clinical reasoning process just as they are used to solve any problem. As clinical reasoning is the central competence of medical education, development of these reasoning skills should occur throughout the undergraduate medical curriculum. The authors describe here a method of teaching reasoning skills in a clinical context during a human anatomy course. Anat Sci Educ 3:267–271, 2010. © 2010 American Association of Anatomists.  相似文献   

20.
小学教育专业本科课程中的技能实训课程具有突出的专业性、综合性、体验性、互动性、创新性特点。课程体系中设置教师技能实训课程模块有利于基础教育新师资职业素养的培养,有利于未来小学教师适应基础教育课程改革和新课程标准教学,有利于师范生个体的专业技能和专业情意的互相转化。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号