首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The study was conducted in filarial endemic area for various clinical presentations and diagnosis of occult filariasis. A total of 157 cases of various clinical presentations namely tropical pulmonary eosinophilia, monoarthritis, polyarthritis, glomerulonephropathy, tenosynovitis, inguinal lymphadenopathy, generalised lymphadenopathy, retroperitonial lymphadenopathy, endomyocardial fibrosis and acute conjunctivitis were screened for filarial antigen and antibody by enzyme linked immunosorbent assay (ELISA). Out of 157 cases, 107 cases were positive for antigen or antibody, suggesting the role of filarial infection in these clinical presentations. All the 107 cases were treated with diethylcarbamazine citrate (DEC) and some of the patients who were followed showed relief in signs and symptoms. Hence assay of filarial antigen and/or antibody may be useful for diagnosing occult filarial syndromes for better management and further appropriate treatment.  相似文献   

2.
The urinary excretion patterns of N-acetyl-β-D-glucosaminidase (NAG), alanine aminopeptidase (AAP) and protein/creatinine ratio (UP/UCR) were studied in 133 diabetic subjects under treatment, 7 patients with established diabetic nephropathy (DN) and 79 carefully selected (age-matched) healthy subjects. NAG, AAP and UP/UCR were highly elevated in DN, while in diabetics urinary NAG levels correlated well with the degree of long-term metabolic control indicated by glycosylated hemoglobin (GHB or Hba1). Both AAP and UP/UCR were found to be more sensitive than NAG, but less specific. Urinary NAG and AAP assays thus offer simple, sensitive and non-invasive techniques for prognostic indication of the onset of microangiopathic changes in long-term diabetic subjects.  相似文献   

3.
A potent hypoglycaemic principle was isolated by us earlier from the seeds of fenugreek. We have now investigated its hypocholesterolemic effect. Hypercholesterolemia was induced in two groups of rabbits (5 each) by feeding orally cholesterol 100 mg/kg/day for one week. From 8th day group I animals (controls) received the same dose of cholesterol for 4 more weeks. Group II animals (treated) were given along with the same dose of cholesterol fenugreek principle at 50 mg/kg/day for 4 weeks. Fenugreek principle not only prevented the elevation of serum cholesterol, (LDL+VLDL)c, triacylglycerols and the ratios of total cholesterol/HDLc and (LDL+VLDL)c/HDLc, but also brought down most of these values. Blood glucose levels were normal. The study shows that the same hypoglycaemic principle has hypocholesterolemic effect also.  相似文献   

4.
Calcium—activated neutral proteases (CANP) were examined in the subcellular fractions of the skeletal muscle from Duchenne muscular dystrophy patients and healthy individuals. Both and m CANP were detected in subcellular fractions of skeletal muscle. An increase in the quantity of CANP in subcellular particles of DMD muscle was observed. A 33 fold rise in the concentration of calcium in nuclei of dystrophic muscle was noted followed by cytosol, myofibrils, microsomes and mitochondria.  相似文献   

5.
The microbicidal capacity of polymorphonuclear leucocytes of diabetic and control subjects was evaluated by estimating the release of lysosomal enzymes viz beta-glucuronidase, lysozyme, acid phosphatase, alkaline phosphatase, in response to a particulate stimulus-serum treated zymosan (STZ). The cells untreated and pretreated with cytochalasin B were exposed to STZ The total enzyme activities were estimated after cell lysis. The total enzyme activities were not altered in diabetic subjects as compared to control subjects. The release of lysosomal enzymes by cells pretreated with cytochalasin B was high as compared to untreated cells. The release of lysosomal enzymes from the cells isolated from diabetic patients, untreated and pretreated with cytochalasin B was reduced as compared to controls. The findings of the present study that the total lysosomal enzyme activities are normal while the release of these enzymes in response to stimulus is impaired in diabetics, suggest that the bactericidal capacity of these cells which involves phagocytosis is impaired in these patients.  相似文献   

6.
Serum phenytoin levels were measured in grand mal epilepsy patients receiving diphenyl hydantoin. The drug levels were correlated with various biochemical parametres. A linear relationship between the levels of diphenyl hydantoin and creatinine was observed. This positive correlation coefficient was found to be statistically signifficant. This correlation may be related to a positive Jaffe’s reaction seen with the chromogen diphenyl hydantoin.  相似文献   

7.
The effect of sodium pentosan polysulphate (SPP), was studied in relation to certain blood and erythrocyte membrane parameters in calcium oxalate stone forming rats. Calcium oxalate stones were induced by feeding the rats with 3% w/w sodium glycollate. Fibrinogen, haemoglobin and serum protein levels did not show any variation with the treatment procedures. Serum mucoprotein and protein bound carbohydrates-hexosamine and sialic acid-were increased significantly in the rats receiving calculogenic (CPD) and attained nearly normal levels with SPP treatment. In contrast, hexuronic acid level was decreased in the CPD group and SPP administration increased the level of hexuronic acid in the treated groups. Erythrocyte membrane Ca2+-ATPase activity was increased in stone forming rats and SPP administration brought a reduction in the above enzyme activity. Changes in Membrane Mg2+- and Na+, K+-ATPases were minimal. Membrane cholesterol and phospholipids were also raised significantly in stone formers, SPP treatment reduced the membrane cholesterol levels in both controls and stone formers. Phospholipids were also decreased moderately. The above observations suggest that SPP is safe for administration in urolithiatic condition without adverse effects.  相似文献   

8.
Blood haemoglobin, serum iron, iron binding capacity, transferrin saturation and ferritin levels were determined in two groups of mothers as well as their cords—strict vegetarians (lactovegetarians) and non-vegetarians (omnivores), closely comparable in age, weight, parity and gestation period but differing in their diet and food habits. All these parameters, except total iron binding capacity, were found to be significantly lower in vegetarian mothers and their cords as compared to nonvegetarian mothers and their cords, respectively, despite receiving supplemental iron for six months. Further, there was a greater incidence of anemia and iron deficiency in mothers consuming only vegetarian diet. Moreover, a significant correlation existed between mother's ferritin to cord ferritin confirming that maternal iron deficiency does affect neonatal iron status. All these observations suggest that strict vegetarian mothers as well as their newborns have a greater incidence and risk of anemia and iron deficiency.  相似文献   

9.
Evaluation of serum SOD and MDA level was done in 21 first episode renal stone formers, 9 recurrent stone formers, 20 patients with obstructive uropathy other than urolithiasis and 12 patients with urinary infection. Twenty-two healthy volunteers were taken as controls. The level of SOD in respective groups was 2.12±0.84, 2.78±0.85, 1.42±0.31, 1.98±0.70 and 2.32±0.62 units/ml and of MDA was 2.61±1.07, 2.69±1.15, 1.65±0.33, 1.33±0.34 and 1.55±0.48 n mol/ml respectively. The results indicate increased peroxidative stressin nephrolithiasis only. Since SOD level was normal in all groups, this increased peroxidative stress in nephrolithiasis should be due to factors other than this one.  相似文献   

10.
The present studies with aluminium chloride given in drinking water showed marked inhibition in the activities of intestinal brush border membrane marker enzymes, namely alkaline phosphatase, acetyl cholinesterase, γ-glutamyl transpeptidase and sucrase. Moreover, a significant depression in the levels of membrane constituents, viz phospholipids, cholesterol, hexoses and sialic acid following aluminium chloride treatment was also observed. On the basis of these studies it may be concluded that if aluminium is taken in high quantities it may alter the structure and functioning of the intestinal brush border membrane, which in turn may lead to the improper digestion and reduced nutrient uptake from the small intestine.  相似文献   

11.
Membrane hydrophobicity and slalidase activity of normal Poly morphonuclear Leucocyte were significantly enhanced when incubated with DSF. As a consequence, internalisation ofE. coli andS. aureus (opsonised or unopsonised) were greatly dimnished, internalisation ofE. coli being higher in either category. Although, increase in hydrophobicity of the membrane correlated well with the time of decrease of particle internalisation (both at 30 min.), enhancement of sialidase activity did not coincide with the said alterations.  相似文献   

12.
Uterine fluid, basically the endometrial secretion, is in dynamic exchange by influx and efflux with the oviducal and cervical fluids. During investigation the uterine fluid of both parous and IUCD women was collected and evaluated for inorganic phosphorus and cholesterol. The results of parous women were compared with the results of IUCD women. The trend of fluctuation in inorganic phosphorus concentration during different phases of menstrual cycle were same in both parous and IUCD women. But there was an increase in concentration in case of IUCD women in all stages of the menstrual cycle. After comparison with parous women a decrease in uterine fluid cholesterol concentration during proliferative period and increase during luteal period of IUCD women was observed. This increase in inorganic phosphorus and decrease and an increase in cholesterol concentration in IUCD women might be responsible in making uterine fluid environment unfavourable for sperm survival and blastocyst implantation.  相似文献   

13.

Introduction:

Intensive exercising may significantly damage muscles which is reflected in pain, fatigue and the increase of muscle proteins concentrations in blood such are creatinin kinase (CK), lactic dehydrogenase (LD), myoglobin (MB) and other biochemical parameters including urea serum concentration (SU). Biochemical markers vary with age, sex, race, muscle mass, physical activity and climate conditions. They also assist us in determining the limit between the capacity for adaptation to given training process which results in supercomepensation and in condition of overtraining (OT), in the case of load that exceeds the physiologic potential of regeneration. Concerning the problem of diagnosis and explanation of the symptoms of overtraining, markers that can apply reliably and with sufficient sensitivity and simplicity of interpretation in the praxis are sought. It is critical to take into account difference among individuals and groups that could hamper the interpretation.

The most frequently used markers:

The most frequently used biomarkers that provide us with the information on physical activity and on the amount of load through exercise are CK, SU and LD. Level of serum retaining kinas has been measured and interpreted for years as part of different scientific and professional investigations and presents one of basic parameters for determining the level of muscle damage. It reaches maximal concentration of the fourth day of exercising which depends on the type of exercise and the nature of stress triggered by exercise but also on individual characteristics.The level of serum urea presents marker of nitric compounds metabolism and is the principle chemical substance in the urine of mammals. It is thus possible to draw a parallel between the increases of serum urea concentration on increased degradations of proteins. Significant fall of serum amino acid levels occurs after sixty to seventy minutes of exercising with the increase of urea and free tyrosine and these changes have high correlation with the duration and intensity of.LD changes are important index of well-trained sportsmen and their capability to withstand the pace and force during strain in the training process. The level of LD is a good index of exercise intensity and marker of metabolic exchange in tissues whose concentration in serum is dependent of cell damage.

Conclusion:

There is not a single, unique parameter that would provide enough valuable information for the estimation of the quality of exercising, amount of load and identification of overtraining. Delayed measurement of biomarkers is far from ideal, but it is obvious that the amount of stress/ load in training is the most important factor for the development of state of overtraining. Daily body weight control, diet, biochemical indices values and the input of water should be known and standardized before measurements. For the most of parameters determination of basal levels are needed in specific populations for more accurate interpretation and evaluation of results. The sampling process itself should be under the most strict conditions of standardization by repeating measurement at least every third day. Dependence of mentioned parameters (SU, CK, LD) on exercise intensity varies among individuals and without these additional measurements and subpopulation evaluations it is difficult to come to conclusions with certainty as well as to come to conclusions on causative correlations of training load and dynamic in biochemical parameters.Biochem Med (Zagreb) 2013 Jun; 23(2): A57–A58. Published online 2013 Jun 15. doi: 10.11613/BM.2013.027

Common sports injuries

Miljenko FranićAuthor information Copyright and License information DisclaimerDubrava University Hospital, ZagrebCorresponding author: rh.dbk@cinarfm©Copyright by Croatian Society of Medical Biochemistry and Laboratory MedicineThis is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/3.0/) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.Sports injuries are injuries that occur in athletic activities and can be broadly classified as either traumatic or overuse injuries. Traumatic injuries because of the dynamic and high collision are nature of some sports. Overuse injuries cause wear and tear on the body, particularly on joints subjected to repeated activity.At every age, competitive and recreational athletes sustain a wide variety of soft tissue, bone, ligament, tendon and nerve injuries, caused by direct trauma or repetitive stress. Different sports are associated with different patterns and types of injuries, whereas age, gender and type of activity influence the prevalence of injuries. Sports trauma commonly affects joints of the extremities or the spine.The hip, knee and ankle are at risk of developing osteoarthritis (OA) after injury or in the presence of malalignment, especially in association with high impact sport. Spine pathologies are associated more commonly with certain sports. Upper extremity syndromes caused by a single stress or by repetitive micro-trauma occur in a variety of sports.Random control trials expose some subjects, but not others, to an intervention. This is more clinical in nature and not typically appropriate for the study of injury patterns. Cohort studies monitor both injured and non-injured athletes, thereby providing results on the effects of participation. Case-control studies monitor only those athletes who suffered an injury. The Ideal study would be Cohort design conducted over several teams, with longitudinal prospective data collection and one recorder where possible, as well as uniformity of injury definition across sports so comparisons between studies can be made accurately.Physical injury is an inherent risk in sports participation and, to a certain extent, must be considered an inevitable cost of athletic training and competition. Injury may lead to incomplete recovery and residual symptoms, drop out from sports, and can cause joint degeneration in the long term.Advances in arthroscopic techniques allow operative management of most intraarticular post-traumatic pathologies in the lower and upper limb joints, but long-term outcomes are not available yet. It is important to balance the negative effects of sports injuries with the many benefits that a serious commitment to sport brings.Biochem Med (Zagreb) 2013 Jun; 23(2): A58–A59. Published online 2013 Jun 15. doi: 10.11613/BM.2013.027

Determination of sample size and number of study groups in sport studies

Mladen PetrovečkiAuthor information Copyright and License information DisclaimerDepartment of Laboratory Diagnosis, Dubrava University Hospital, Zagreb, Croatia, and Department of Medical Informatics, Rijeka University School of Medicine, RijekaCorresponding author: rh.irdem@pnedalmCopyright by Croatian Society of Medical Biochemistry and Laboratory MedicineThis is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/3.0/) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.  相似文献   

14.
Fuchs (2010 Fuchs, C. 2010. Labor in information capitalism and on the Internet. The Information Society 26:179196.[Taylor & Francis Online], [Web of Science ®] [Google Scholar], 2012 Fuchs, C. 2012. With or without Marx? With or without capitalism?: A re-joinder to Adam Arvidsson and Eleanor Colleoni. tripleC 10 (2):63345. [Google Scholar]) argues that users of social media produce value and surplus value in the Marxian sense. Arvidsson and Colleoni (2012 Arvidsson, A., and E. Colleoni. 2012. Value in information capitalism and on the Internet. The Information Society 28:13550.[Taylor & Francis Online], [Web of Science ®] [Google Scholar]) critique this hypothesis, claiming that Marx's theory of value is irrelevant to the regime of value production on social media platforms in particular and in informational capitalism in general. They claim that the affective relations and financial speculations that generate value on social media are not dependent on labor time. This article critically engages Fuchs, and Arvidsson and Colleoni, by revisiting Marx's theory of value. Contra Fuchs, we argue that audiences do not produce value and surplus value—neither for social nor for mass media. Contra Arvidsson and Colleoni, we argue that so-called affective relations (philia) do not produce value either. Instead we demonstrate that social media generate revenue from four primary sources—by leasing advertisement space to generate advertisement rent, by selling information, by selling services to advertisers, and by generating profits from fictitious capital and speculative windfalls. All four, we argue, can be adequately explained by Marx's theory of value.  相似文献   

15.
This commentary supplements the work of a creative practice research project that generates new ways of thinking about innovation and entrepreneurial processes. Our creative method, underwritten by the logic of sensation and presented in film format, operates as an alternative form of research in these fields, where results are normally conveyed in book or journal paper. Film-based research has developed distinctive qualitative, empirical and theoretical vocabularies that can expand the nature and range of evidence, argument and expression across the broad range of innovation and entrepreneurship studies. 600 Mills, the film that accompanies this paper, is available at https://doi.org/10.1080/08109028.2017.1336011.  相似文献   

16.
The effects of administration of glibenclamide, tolbutamide and insulin on serum lipoprotein fractions in alloxan diabetic rabbits were studied with a view to understand the role played by these antidiabetic drugs to influence serum levels of these fractions. The elevated levels of cholesterol in serum lipoprotein fractions—HDL, LDL and VLDL in alloxan diabetic rabbits were found to be decreased significantly on treatment with glibenclamide, tolbutamide and insulin. However, the LDL-cholesterol: HDL-cholesterol ratio which is considered to be an atherogenic index showed a statistically significant increase in tolbutamide treated group and a statistically significant decrease in insulin-treated group, whereas the glibenclamide treated group showed no change.  相似文献   

17.
Morphological plasticity is an important survival strategy for bacteria adapting to stressful environments in response to new physical constraints. Here, we demonstrate Escherichia coli morphological plasticity can be induced by switching stress levels through the physical constraints of periodic micro-nanofluidic junctions. Moreover, the generation of diverse morphological aberrancies requires the intact functions of the divisome- and elongasome-directed pathways. It is also intriguing that the altered morphologies are developed in bacteria undergoing morphological reversion as stresses are removed. Cell filamentation underlies the most dominant morphological phenotypes, in which transitions between the novel pattern formations by the spatial regulators of the divisome, i.e., the Min system, are observed, suggesting their potential linkage during morphological reversion.Most bacteria have evolved sophisticated systems to manage their characteristic morphology by orchestrating the spatiotemporal synthesis of the murein sacculus (peptidoglycan exoskeleton), which is known to be the stress-bearing component of cell wall and presides over de novo generation of cell shape.1 Morphological plasticity is attributed to a bacterial survival strategy as responding to stressful environments such as innate immune effectors, antimicrobial therapy, quorum sensing, and protistan predation.2 It comes of no surprise that stress-induced diversified morphology and mechanisms, ascribed to shape control and determination, have drawn great attention in both fundamental and clinical studies.3–6 The molecular mechanism to form filamentous bacteria has been revealed that both β-lactam antibiotics3 and oxidative radicals produced by phagocytic cells5 trigger the SOS response, promoting cell elongation by inactivating cell division via the blockade of tubulin-like FtsZ, known as the divisome initiator. While apart from the scenario of length control by the divisome-directed filamentation, the elongasome assembled by proteins associated with actin-like MreB complex1,7,8 helps the insertion of peptidoglycans into lateral cell wall, suggesting the role in the determination of cell diameter during cell elongation.Recently, additional mechanisms other than the divisome/elongasome-directed pathways of shape maintenance are discovered to regenerate normal morphology de novo from wall-less lysozyme-induced (LI) spheroplasts of E. coli via a plethora types of aberrant division intermediates.9 Similar morphological reversion from different aberrant bacterial shapes has been observed as squashed wild-type bacteria generated through sub-micron constrictions are released into connected microchambers.10 Previous work using the microfluidic approach focuses on the septation accuracy and robustness of constricted bacteria,11 but the reversion process of stress-released bacteria is not well studied and analyzed. In particular, the aberrant bacterial shape is mainly branched-type with bent and curved variants in the reverting bacteria, analogous to the aberrant intermediate found in the morphological reversion of LI spheroplasts with PBP5-defective mutant.9 Since bacteria suffering from starvation12 or confronting mechanical stresses exerted by phagocytosis and protistan grazing6 can induce morphological alterations, one could manipulate the stress levels of physical constraints by adopting repeated structures of sub-micron constricted channels (nanoslits) and microchambers,10,11 to select and enrich bacteria converting to specified aberrant intermediates. The stress incurred by the nanoslit on bacteria is about the mechanical intervention over de novo synthesis of the cell wall, which is the major factor causing morphological aberrancy, while the second environmental stress comes from bacterial growth in the restricted space of microchamber as bacteria proliferate to full confluency, resulting in growth pressure of high population density, nutrient deficiency, and the size reduction of bacteria.Here, we report the selection of distinctive bacterial morphologies by size shrinkage in the outlet cross-section (W × H = 1.5 × 1.5 μm) of the terminal microchamber in the periodic structures of nanoslit-microchamber (Figs. 1(a) and 1(b)). The fluidic structures were micropatterned on fused silica wafers by photolithography, fabricated through reactive ion etching (RIE) and inductively coupled plasma (ICP) etching, and encapsulated by cover glasses coated with polydimethylsiloxane (PDMS) or polysilsesquioxane (PSQ) layer as described earlier.13,14 Two days after the outgrowth of Escherichia coli (imp4213 [MC4100 ΔlamB106 imp4213]) loaded to the microfluidic device at 25 °C, bacteria started to penetrate into the nanoslit as they proliferated to full confluency in the first microchamber (Fig. 1(c)). It takes about 10 days for bacteria traversing 500 μm long (5 repeated nanoslit-microchamber units) via proliferations and being released from the outlet of the terminal microchamber. The narrowed outlet allows only bacteria with smaller diameters to be squeezed into the spacious and nutrient-rich region, thus it acts as a spatial filter to avoid the passage of branching bacteria with cross-sectional size larger than that of the outlet. The rationale of this design is to select aberrant bacteria prone to promote de novo shape regeneration other than the branched-type, which is the dominant morphology of reverting bacteria in the prior microfluidic constriction study.10 As anticipated, the stress-released bacteria through the narrowed outlet are therefore mostly filamentous (see statistical analysis for cell morphology in the supplementary material).15 However, it is noted that the aberrant morphology of lemon-like shape with tubular poles (Figs. 1(d-1), 1(d-3), and 1(d-11)) is developed about 3 h after the stress-released bacteria escaped through the outlet. Though the generation of the lemon-like aberrancy in bacteria has been reported in PBP5/7-defective E. coli mutant subjected to a high-level inhibition of both MreB and FtsZ, while the same mutant treated with low-level MreB inhibitor, together with antagonized-FtsZ, displays filamentous shape with varying diameters,16 these morphological aberrances can be observed in our system (Figs. 1(d-2) and 1(d-12)). Besides, a high-level inhibition of MreB in E. coli with an intact divisome function is known to cause round bacteria, resembling to the cell morphology of the bacteria shown in Fig. 1(d-4). Interestingly, parallel experiments using bacteria mutants carrying impaired regulatory functions in either the divisome (Min) or the elongasome (MreB) do not develop morphological plasticity (supplementary Fig. S1).15 Taken together, the filamentous and lemon-like variants selected from our microfluidic platform, while elaborating the morphological plasticity and reverting progression, require both the functional divisome/elongasome. Alternatively, the selection by the spatial filter does not fully exclude cells with aberrant shapes such as the branched-type with initial budding (Fig. 1(d-7)), cells with asymmetric cross-section perpendicular to the longitudinal axis (Figs. 1(d-2), 1(d-8), 1(d-9), 1(d-9′), and 1(d-10)), and those resembling to the morphological phenotypes of the division intermediates reported in the LI-spheroplasts carrying genetic defects on some non-cytoskeletal proteins (Figs. 1(d-5) and 1(d-6)). In particular, intracellular vesicles and cell autolysis are observed in some reverting bacteria (Figs. 1(d-5) and 1(d-6)), which are reminiscent to the phenomena reported in the division intermediates of the LI-spheroplasts lacking stress response system (Rcs) or some accessory proteins (PBP1B and LpoB). Unlike the bacteria grow with odd shapes under the stress of nanofluidic confinement only10 (Fig. 1(c)), all the morphological aberrancy reported here are developed in the reverting bacteria, which grow in the spacious and nutrition-rich environment and are free from physical constraints. Further investigations over the expression levels of the divisome/elongasome networks and the stress-response system in bacterial cells subjected to micro-nanofluidic junctions could be insightful in understanding their role in bacterial shape control.9Open in a separate windowFIG. 1.(a) Schematics of the microfluidic device used in this study with an H-shaped geometry (left upper panel), where repeated nanoslit (L×W×H = 50×10×0.4 μm)−microchamber (L×W×H = 50×50×1.5 μm) structures are bridged between two arms of the H-shaped microchannels (left lower panel and enlarged view in right panel). (b) Top-view layout of an individual channel in (a) with close view of the outlet in the terminal microchamber (orange: nanoslits; blue: microchambers). (c) Fluorescence micrograph of E. coli imp4213 penetrating a nanoslit (scale bar: 5 μm). (d) Bright-field micrographs for various cell morphology of the selected imp4213 released from the outlet (magenta arrows: cells with vesicles; scale bar: 5 μm). (e) Sequential bright-field micrographs of morphological reversion. T1–T3 indicate the time after bacteria escaping from the outlet. T1: 3 h; T2: 6 h; T3: 24 h. Scale bar: 10 μm.During the morphological reversion, the stress-released bacteria rapidly increase their size in the first 3 h after escaping from the terminal microchamber (T1 in Fig. 1(e)). Some filamentous bacteria even grow over 50 μm long, though such a morphological phenotype implicates the cessation of functional divisome. With active growth and proliferation, the progeny of stress-released bacteria increase their population but gradually reduce their size about 6 h after being released from the constriction stress (T2 in Fig. 1(e)). Fig. Fig.22 displays the marginal histograms for different shape factors, where Fig. 2(a) is the plot of the minimal Feret diameter (cell diameter) versus Feret diameter (cell length), i.e., the shortest versus the longest distance between any two points with parallel tangents along the cell peripheral, respectively, indicating that cell diameters are larger for reverting bacteria at T1 (mean ± S.E.M. = 1.89 ± 0.08 μm) with respect to T2 (1.51 ± 0.06 μm). Moreover, the histogram of Feret diameter depicts two major populations of the cell length for reverting bacteria at T1, which mostly resume to typical cell length at T2 (the median of Feret diameter = 3.33 μm; see statistical analysis for Fig. Fig.22 in the supplementary material).15 The shape factors of circularity (4π × [area]/[perimeter]2) and aspect ratio ([major axis]/[minor axis] for the cell geometry fitted to an ellipse) confirm the existence of dual populations for bacteria at T1 as well (Fig. 2(b)). About 24 h after escaping (T3 in Fig. 1(e)), almost all the progeny of stress-released bacteria regained the rod shape.Open in a separate windowFIG. 2.Marginal histograms for shape factors measured from the reverting imp4213 at T1 and T2. (a) Minimal Feret diameter (cell diameter) versus Feret diameter (cell length). (b) Circularity versus aspect ratio. N = 366 for T1 and N = 494 for T2.The bacterial size reduction of filamentous and lemon-like shape variants, though involving negative control of the divisome positioning by the spatial regulators of MinCDE system,17 is not completely understood as to how they coordinate in aberrant geometries. Besides, the filamentation of stress-released bacteria during the period of T1 to T2 implicates the inhibition of functional divisome. With minimal perturbation of the divisome by leaky expression of GFP-MinD and MinE (imp4213/Plac-gfpmut2::minD minE), the patterning dynamics of GFP-MinD in different bacterial morphology were time-lapse imaged during morphological reversion. Intriguingly, more than the standing-wave-like pattern of MinD denoted in filamentous E. coli,18 we discovered bidirectional drifting of two standing-wave-like patterns of MinD occur in most reverting bacteria filaments (supplementary Figs. S2(a) and S2(b)).15 The bidirectional drifting in the longitudinal direction of the cells may be emanating from the cell poles (the blue upper panel of Fig. 3(a) and supplementary Fig. S2(c)15) and the cylinder region (the blue lower panel of Fig. 3(a) and supplementary Fig. S2(d)15). Furthermore, the MinD pattern transitions from the standing to traveling waves are occasionally observed (the lower panel of Figs. 3(a) and supplementary Fig. S2(e)15). Notably, the standing-wave-like MinD patterns exhibit bidirectional drifting along the cell longitudinal direction and intermittently change directions, implying the competition between coexisting MinD patterns can be supported under filamentous geometry. Despite there have been observations of multiple wave-packet of traveling waves in filamentous cells,19 the mixture of distinct wave-like MinD patterns have never been experimentally reported. While most intriguingly, multiple drifting movements of wave-like MinD patterns potentiate the mitigation of periodic minima in time-averaged Min gradient in the reverting filamentous bacteria, suggesting the disability of proper divisome positioning for recovering the typical rod shape. Apart from the wave-like movements, amoeba-like motion of Min proteins has been shown in vitro upon synthetic minimal system, but never been verified in vivo.20 Strikingly, here amoeba-like motion of MinD is the dominant mode in lemon-like bacteria and the transitions between wave-like patterns and amoeba-like motion are supported even under filamentous geometry (Figs. 3(b) and 3(c), Multimedia view).Open in a separate windowFIG. 3.Kymographs for GFP-MinD dynamics in selected imp4213 cells during morphological reversion: (a) Mixture modes of standing wave packets and traveling wave. The left panel is the stacked fluorescence micrograph displaying cell shape (scale bar = 5 μm). The kymograph is derived from the filamentous cell indicated by the green arrow (scale bar: 120 s horizontal; 5 μm vertical), where the lower panel follows the upper panel in time. The yellow windows indicate bidirectional-drifting standing wave packets, while the green indicates traveling waves (see also supplementary Fig. S2).15 (b) Sequential fluorescence micrographs of GFP-MinD in lemon-shape imp4213 show amoeba-like motion, with the first left a bright-field image (scale bar: 10 μm). (c) Mixed modes of amoeba-like motion and waves in selected filamentous imp4213 cell indicated by the green arrow in the left panel (scale bar = 5 μm). The filamentous cells depicted in (a) and (c) locate at the top region while the lemon-shape cell in (b) at the central region of the movie (time stamp in min:s). (Multimedia view) [URL: http://dx.doi.org/10.1063/1.4892860.1]In summary, we have demonstrated that the development of bacterial morphological plasticity can be stress-induced by periodic physical constraints with intact functions of the divisome and elongasome-directed pathways. Through size exclusion, the constricted outlet structure designed in our microfluidic device is useful in selecting bacteria with plethora morphological aberrancies other than the branched type. Interestingly, disparate morphological changes, rather than those being directly induced under a stressful environment, can be generated in the stress-released bacteria experiencing morphological reversion. Further, the discovery of novel transitions between the Min patterns in most reverting bacteria implicates its regulatory effect of cell filamentation. However, by exploiting the micro-nanofluidic approach, further investigations of the mechanism underlying the development of morphological plasticity in bacteria adapting to physical constraints are expected in future studies to gain more insights into the molecular basis of shape generation.  相似文献   

18.
Determining the thermal conductivity of iron alloys at high pressures and temperatures are essential for understanding the thermal history and dynamics of the Earth''s metallic cores. The authors summarize relevant high-pressure experiments using a diamond-anvil cell and discuss implications of high core conductivity for its thermal and compositional evolution.

The thermal conductivity of iron alloys is a key to understanding the mechanism of convection in the Earth''s liquid core and its thermal history. The Earth''s magnetic field is formed by a dynamo action that requires convection in the liquid core. Present-day outer core convection can be driven by the buoyancy of light-element-enriched liquid that is released upon inner core solidification in addition to thermal buoyancy associated with secular cooling. In contrast, before the birth of the inner core, the core heat loss must be more than the heat conducted down the isentropic gradient in order to drive convection by thermal buoyancy alone, which can be a tight constraint upon the core thermal evolution.Recent mineral physics studies throw the traditional value of the Earth''s core thermal conductivity into doubt (Fig. (Fig.1).1). Conventionally the thermal conductivity of the outer core had been considered to be ∼30 W m−1 K−1, an estimate based on shock experiments and simple physical models including the Wiedemann-Franz law: κel = LTρ−1, where κel, L, T and ρ are electronic thermal conductivity, Lorenz number, temperature and electrical resistivity, respectively [1]. Such relatively low core conductivity indicates that liquid core convection could have been driven thermally even with relatively slow cooling rate. However, in 2012–2013, our conventional view was challenged by both computational and experimental studies showing much higher core conductivity [2–4].Open in a separate windowFigure 1.(a) Electrical resistivity and (b) thermal conductivity values at the top of the Earth''s core in the literature [1,2,4–7,9,16]. Filled symbols were calculated on the basis of the Wiedemann-Franz law with ideal Lorenz number (L0 = 2.44 × 10−8 W Ω K−2). Gray bands indicate (a) the range of saturation resistivity [9] and (b) thermal conductivity computed from the saturation resistivity and the Wiedemann-Franz law.Since then, experimental determinations of the thermal conductivity of iron and alloys have been controversial (Fig. (Fig.1).1). Ohta et al. [5] measured the electrical resistivity of iron under core conditions in a laser-heated diamond-anvil cell (DAC). The results demonstrate relatively high thermal conductivity of ∼90 W m−1 K−1 for liquid Fe-Ni-Si alloy based on their measured resistivity for pure iron, Matthissen''s rule and Wiedemann-Franz law, which is compatible with ab initio simulations [2,4]. On the other hand, flash laser-heating and fast thermal radiation detection experiments demonstrated the low core conductivity of 20–35 W m−1 K−1 based on finite element method simulations [6,7], in accordance with the traditional estimate [1]. Since transport properties that describe non-equilibrium phenomena are difficult to measure, the fact that determinations of the iron conductivity under core conditions have become viable these days is a remarkable success in mineral physics. Nevertheless, the discrepancy in core conductivity makes a big difference in the expected age of the inner core, mechanism of liquid core convection and thermal history [3].Despite a number of subsequent studies based on a variety of different techniques, we still see a dichotomy of proposed core conductivity values (Fig. (Fig.1).1). The ‘saturation’ resistivity, which is derived from the fact that the mean free path of electron–phonon interaction cannot be longer than the interatomic distance, gives the lower bound for conductivity. Such saturation resistivity lies between two clusters of reported high and low resistivity values. While the resistivity saturation is important in highly resistive transition metals and their alloys [3,8] (Fig. (Fig.2),2), the conventional estimate [1] did not include the effect of saturation in their models, which resulted in much higher resistivity than the saturation value and hence low core conductivity. The core electrical resistivity measured by recent DAC experiments [3,5,9] shows resistivity saturation (Fig. (Fig.2),2), demonstrating the high core conductivity as far as the Wiedemann-Franz law holds with ideal Lorenz number (Fig. (Fig.1).1). Additionally, since temperature has a large effect on resistivity, temperature gradient in a laser-heated sample is an issue. An internally-resistance-heated DAC provides homogenous and stable sample heating and is thus a promising technique for conductivity measurements at high pressure and temperature (P–T) [9]. The validity of the Wiedemann-Franz law under extreme conditions has also been an issue. Simultaneous measurements of the electrical resistivity and the thermal conductivity of iron alloy under core high P–T conditions will provide decisive evidence for it.Open in a separate windowFigure 2.Temperature response of the electrical resistivity of (a) fcc iron estimated at 1 bar [8] (blue curve) and (b) hcp iron at 115 GPa [5]. Red curve and black line with gray uncertainty band indicate the predicted resistivity based on the Bloch-Grüneisen model with and without the resistivity saturation, respectively.As introduced above, the most recent high P–T measurements for Fe containing 2, 4, 6.5 wt.% Si using an internally-resistance-heated DAC have demonstrated that the thermal conductivity of Fe-12.7 wt.% (22.5 at.%) Si is ∼88 W m−1 K−1 at core-mantle boundary (CMB) conditions when the effects of resistivity saturation, melting and crystallographic anisotropy at measurements are taken into account [9] (Fig. (Fig.1).1). Thermal conductivity of Fe-10 at.% Ni-22.5 at.% Si alloy, a possible outer core composition, could be ∼79 W m−1 K−1 considering the impurity effect of Ni [10]. Si exhibits the largest ‘impurity resistivity’, indicating that the 79 W m−1 K−1 is the lower bound for the thermal conductivity of the Earth''s liquid core. The core thermal evolution models by Labrosse [11] demonstrated that if liquid core convection has been driven by thermal buoyancy with the core thermal conductivity of 79 W m−1 K−1 at the CMB and no radiogenic heating in the core, the CMB temperature is calculated to be ∼5500 K at 3.2 Ga and ∼4800 K at 2.0 Ga. Such high CMB temperature suggests that the whole mantle was fully molten until 2.0–3.2 Ga. It is not consistent with geological records, calling for a different mechanism of core convection.Chemical buoyancy may be an alternate means of driving convection in the core from the early history of the Earth. It has been proposed that the compositional buoyancy in the core could arise from the exsolution of MgO, SiO2 or both [12–14]. Recent core formation models based on the core-mantle distributions of siderophile elements suggest that core metals segregated from silicate at high temperatures, typically at 3000–4000 K and possibly higher [13,15], which enhances the incorporation of lithophile elements including Si and O, and possibly Mg into metals. It is suggested that the (Si, O)-rich liquid core may have become saturated with SiO2 upon secular cooling [14]. Indeed, the original core compositions proposed in recent core formation models include Si and O beyond the saturation limit at CMB conditions [15], i.e. 136 GPa and 4000 K, leading to SiO2 crystallization [13]. The rate of SiO2 crystallization required to sustain geodynamo is as low as 1 wt.% per 109 years, which corresponds to a cooling rate of 100–200 K Gyr−1 [14]. The most recent model of the core compositional evolution by Helffrich et al. [13] showed that MgO saturation follows SiO2 saturation only when >1.7 wt.% Mg in the core. If this is the case, in addition to solid SiO2, (Mg, Fe)-silicate melts exsolve from the core and transfer core-hosted elements such as Mo, W and Pt to the mantle. The core-derived silicate melts may have evolved toward FeO-rich compositions and now represent the ultra-low velocity zones above the CMB.  相似文献   

19.
A microfluidic device was successfully fabricated for the rapid serodiagnosis of amebiasis. A micro bead-based immunoassay was fabricated within integrated microfluidic chip to detect the antibody to Entamoeba histolytica in serum samples. In this assay, a recombinant fragment of C terminus of intermediate subunit of galactose and N-acetyl-D-galactosamine-inhibitable lectin of Entamoeba histolytica (C-Igl, aa 603-1088) has been utilized instead of the crude antigen. This device was validated with serum samples from patients with amebiasis and showed great sensitivity. The serodiagnosis can be completed within 20 min with 2 μl sample consumption. The device can be applied for the rapid and cheap diagnosis of other infectious disease, especially for the developing countries with very limited medical facilities.Entamoeba histolytica is the causative agent of amebiasis and is globally considered a leading parasitic cause of human mortality.1 It has been estimated that 50 × 106 people develop invasive disease such as amebic dysentery and amebic liver abscess, resulting in 100 000 deaths per annum.2, 3 High sensitive diagnosis method for early stage amebiasis is quite critical to prevent and cure this disease. To date, various serological tests have been used for the immune diagnosis of amebiasis, such as the indirect fluorescent antibody test (IFA) and enzyme-linked immunosorbent assay (ELISA).We have recently identified a 150-kDa surface antigen of E. histolytica as an intermediate subunit (Igl) of galactose and N-acetyl-D-galactosamine-inhibitable lectin.4, 5 In particular, it has been shown that the C-terminus of Igl (C-Igl, aa 603-1088) was an especially useful antigen for the serodiagnosis of amebiasis. ELISA using C-Igl is more specific than the traditional ELISA using crude antigen.6 However, the ELISA process usually takes several hours, which is still labor-intensive and requires experienced operators to perform. More economic and convenient filed diagnosis methods are still in need, especially for the developing countries with limited medical facilities.Among all the bioanalytical techniques, microfluidics has been attracting more and more attention because of its low reagent/power consumption, the rapid analysis speed as well as easy automation.7, 8, 9, 10, 11 Especially with the development of the fabrication technique, microfluidics chip can include valves, mixers, pumps, heating devices, and even micro sensors, so many traditional bioanalytical methods can be performed in the microfluidics. Qualitative and quantitative immune analysis on the microfluidic chip was successfully proved by plenty of research with improved sensitivity, shorten reaction time, and less sample consumption.8, 10, 11, 12, 13, 14, 15, 16, 17 Moreover, with the intervention of other physical, chemical, biology, and electronic technology, microfluidic technique has been successfully utilized in protein crystallization, protein and gene analysis, cell capture and culturing and analysis as well as in the rapid and quantitative detection of microbes.13, 14, 15, 16, 17, 18, 19, 20Herein, we report a new integrated microfluidic device, which is capable of rapid serodiagnosis of amebiasis with little sample consumption. The microfluidic device was fabricated from polydimethysiloxane (PDMS) following standard soft lithography.21, 22 The device was composed of two layers (shown in Figure Figure1)1) including upper fluidic layer (in green and blue) and bottom control layer (in red).Open in a separate windowFigure 1Structure illustration of microfluidic chip.To create the fluidic layer and the control layer, two different molds with different patterns have fabricated by photolithographic processes. The mold to create the fluidic channels was made by positive photoresist (AZ-50 XT), while the control pneumatic mold was made by negative photoresist (SU8 2025). For the chip fabrication, the fluidic layer is made from PDMS (RTV 615 A: B in ratio 5:1), and the pattern was transferred from the respective mold. The control layer is made from PDMS (RTV 615 A:B in ratio 20:1). The two layers were assembled and bonded together accurately, and there is elastic PDMS membrane about 30 μm thick between the fluidic layer channels and control layer.21, 22 The elastic membrane at the intersection can deform to block the fluid inside the fluidic channels, functioning as valves under the pressures introduced though control channels. There are two types of channels in fluidic layer, the rectangular profiled (in green, 200 μm wide, 35 μm thick) channel and round profiled channels (in blue, 200 μm wide, 25 μm center height). Because of the position of the valves on the fluidic channels, two types of valves (Figure (Figure2a)2a) were built, working as a standard valve and a sieve valve. The standard valves (on blue fluidic channels) can totally block the fluid because of the round profile of fluidic channel; the sieve valve can only half close because of the rectangular profile. The sieve valve can be used to trap the microspheres (beads) filled inside the green fluidic channels, while letting the fluid pass through. By this sieve valve, a micro column (in green) is constructed, where the entire ELISA reaction happens. The micrograph of the fabricated micro device is shown in Figure Figure2b.2b. The channels were filled with food dyes in different colors to show the relative positions of the channels. The pressures though different control channels are individually controlled by solenoid valves, connected to a computer through relay board. By programming the status (on/off) of various valves at different time periods, all the microfluidic chip operation can be digitally controlled by the computer in manual, semi-automatic, or automatic manner.Open in a separate windowFigure 2(a) Structure illustration of micro column, standard valve and sieve valve; (b) photograph of the microfluidic chip.To validate this device, 12 patient serum samples were collected. Sera from 9 patients (Nos. 1–9) with an amebic liver abscess or amebic colitis were used as symptomatic cases. The diagnosis of these patients was based on their clinical symptoms, ultrasound examination (liver abscess) and endoscopic or microscopic examination (colitis). We also identified the clinical samples using PCR amplification of rRNA genes.24 As negative control, sera obtained from 3 healthy individuals with no known history of amebiasis were mixed into pool sera. The serum was positive for E. histolytica with a titer of 1:64 (borderline positive), as determined by an indirect fluorescent-antibody (IFA) test.23, 24 In our previously study, the sensitivity and specificity of the recombinant C-Igl in the ELISA were 97% and 99%.6, 25 In the current study, the serodiagnosis of amebiasis was also examined by ELISA using C-Igl.26 The cut-off for a positive result was defined as an ELISA value > 3 SD above the mean for healthy negative controls27 (shown in Figure Figure3).3). The seropositivity to C-Igl was 100% in patients with amebiasis.Open in a separate windowFigure 3ELISA reactivity of sera from patients against C-Igl. ELISA plate was coated with 100 ng per well of C-Igl. Serum samples from patients and healthy controls were used at 1:400 dilutions. The dashed line indicates the cut-off value. Data are representative of results from three independent experiments.In the diagnosis process with microfluidic chip, the 4 micro immuno-columns filled with C-Igl-coated microspheres were the key components of the device. The C-Igl was prepared in E. coli as inclusion bodies. After expression, the recombinant protein was purified and analyzed by SDS-PAGE. The apparent molecular mass was 85 kDa.26The immune-reaction mechanism is illustrated in Figure Figure4.4. The anti-His monocolonal antibody was immobilized onto the microspheres (beads, 9 μm diameter) coated with protein A. The C-Igl was then immobilized onto the beads through the binding between the His tag and C-Igl. For the diagnosis, the microspheres immobilized with C-Igl and blocked by 5% BSA were preloaded into the columns for the rapid analysis of the patient serum samples. Generally, serum samples which were diluted 100 times were first loaded into the reaction column and incubated at room temperature for 5 min. After being washed by PBS buffer, FITC-conjugated goat anti-human polyclonal antibody was added into the column for 4 min incubation. The fluorescence image can be collected by the fluorescence microscope after the micro column was washed with PBS buffer. From loading diluted serum samples into column to collecting fluorescence images, the total time to complete the immunoassay is less than 10 min. The final fluorescence results were analyzed by Image Pro Plus 6.0.Open in a separate windowFigure 4Schematic representation of the ELISA in the chip.Different reaction conditions have been investigated to find the optimized ones. For each patient, 2 μl sample is enough for the analysis. The designed microfluidic chip with 4 micro columns is capable for 4 parallel analyses at the same time. More micro columns can be integrated into the device if more parallel tests are needed.Different incubating time for the diagnosis has also been investigated and no significant difference has been found for various time periods. It is enough to incubate the chip for only 5 min. The total diagnosis time for one sample is less than 10 min. The detection result appeared as the fluorescence intensity of the reaction column. As shown in Figure Figure5,5, the negative sample showed relatively low fluorescence intensity, because little FITC-conjugated goat anti-human polyclonal antibody could attach to the surface of microspheres; on the contrast, the positive sample showed much brighter fluorescence. The fluorescence intensity can be transferred to digital data (Table
SampleAverage scoresStandard deviation
133 790368
223 269271
339 598307
4778452
521 222197
638 878290
722 437227
836 295334
941 024396
Negative20032
Open in a separate windowOpen in a separate windowFigure 5ELISA on the chip. The signals were collected by CCD of microscope. A: negative sample; B and C: positive samples.For the heterogeneous immunoreactions, the immobilization of the immune molecules is essential for the reaction efficiency. Herein, we utilized micro columns filled with pre-modified microspheres (beads) instead of the direct surface modification for the ELISA analysis. Compared with the traditional method, diagnosis using the microfluidic device took less than 10 min with only 2 μl sample consumption and little reagent consumption. The high efficiency might be attributed to the high surface modification efficiency by using beads as well as the advantages from microfluidic device itself. The C-Igl modified microspheres can be easily prepared in 1 h and preloaded inside the micro device for convenient application. The device is made from standard soft lithography by PDMS and its throughput can be easily improved by adding more micro columns into the microfluidic device in an economic manner, which is perfect for the onsite rapid and cheap diagnosis of amebiasis. Similar methodologies can be developed for diagnosis of other infectious disease, especially for the developing countries with very limited medical facilities.  相似文献   

20.
Magnetographic array for the capture and enumeration of single cells and cell pairs     
C. Wyatt Shields  IV  Carissa E. Livingston  Benjamin B. Yellen  Gabriel P. López  David M. Murdoch 《Biomicrofluidics》2014,8(4)
We present a simple microchip device consisting of an overlaid pattern of micromagnets and microwells capable of capturing magnetically labeled cells into well-defined compartments (with accuracies >95%). Its flexible design permits the programmable deposition of single cells for their direct enumeration and pairs of cells for the detailed analysis of cell-cell interactions. This cell arraying device requires no external power and can be operated solely with permanent magnets. Large scale image analysis of cells captured in this array can yield valuable information (e.g., regarding various immune parameters such as the CD4:CD8 ratio) in a miniaturized and portable platform.The emergent need for point-of-care devices has spurred development of simplified platforms to organize cells across well-defined templates.1 These devices employ passive microwells, immunospecific adhesive islands, and electric, optical, and acoustic traps to manipulate cells.2–6 In contrast, magnetic templating can control the spatial organization of cells through its ability to readily program ferromagnetic memory states.7 While it has been applied to control the deposition of magnetic beads,8–13 it has not been used to direct the deposition of heterogeneous cell pairs, which may help provide critical insight into the function of single cells.14,15 As such, we developed a simple magnetographic device capable of arraying single cells and pairs of cells with high fidelity. We show this magnetic templating tool can use immunospecific magnetic labels for both the isolation of cells from blood and their organization into spatially defined wells.We used standard photolithographic techniques to fabricate the microchips (see supplementary material16). Briefly, an array of 10 × 30 μm cobalt micromagnets were patterned by a photolithographic liftoff process and overlaid with a pattern of dumbbell-shaped microwells formed in SU-8 photoresist (Fig. 1(a)). The micromagnets were designed to produce a predominantly vertical field in the microwells by aligning the ends of the micromagnet at the center of each well of the dumbbell. These features were deposited across an area of ≈400 mm2 (>50 000 well pairs per microchip) (Fig. 1(b)). Depending on the programmed magnetization state with respect to the external field, magnetic beads or cells were attracted to one pole and repelled by the other pole of each micromagnet, leading to a biased deposition (Fig. 1(c)).12Open in a separate windowFIG. 1.Magnetographic array for single cell analysis. (a) SEM image of the dumbbell-shaped well pairs for capturing magnetically labelled cells. (b) Photograph of the finished device. (c) An array of well pairs displaying a pitch of 60 × 120 μm before (top) and 10 min after the deposition of magnetic beads (bottom).To demonstrate the capability of the array to capture cells into a format amenable for rapid image processing, we organized CD3+ lymphocytes using only hand-held permanent magnets. We isolated CD3+ lymphocytes from blood via positive selection using anti-CD3 magnetic nanoparticles (EasySep™, STEMCELL Technologies) with purities confirmed by flow cytometry (97.8%; see supplementary material16). We then stained 1 × 106 CD3+ cells with anti-CD8 Alexa-488 and anti-CD4 Alexa-647 (5 μl of each antibody in 100 μl for 20 min; BD Bioscience) to determine the CD4:CD8 ratio, a prognostic ratio for assessing the immune system.17,18Variably spaced neodymium magnets (0.5 in. × 0.5 in. × 1 in.; K&J Magnetics, Inc.) were fixed on either side of the microchip to generate a tunable magnetic field (0–400 G; Fig. 2(a)). Using this setup, fluorescently labeled cells were deposited, and the populations of CD4+ and CD8+ cells were indiscriminately arrayed, imaged, and enumerated using ImageJ. The resulting CD4:CD8 ratio of 1.84 ± 0.18 (Fig. 2(b)) was confirmed by flow cytometry with a high correlation (5.4% difference; Fig. 2(c)), indicating the magnetographic microarray can pattern cells for the rapid and accurate assessment of critical phenotypical parameters without complex equipment (e.g., function generators or flow cytometers).Open in a separate windowFIG. 2.CD8 analysis of CD3+ lymphocytes. (a) Photograph of the magnetographic device activated by permanent magnets (covered with green tape). The CD4:CD8 ratio determined by the (b) magnetographic microarray and (c) and (d) flow cytometry was 1.84 and 1.74, respectively.More complex operations, such as the programmed deposition of cell pairs, can be achieved by leveraging the switchable, bistable magnetization of the micromagnets for the detailed studies of cell-cell interactions (Figs. 3(a)–3(d)).12 For these studies, a 200 G horizontal field generated from an electromagnetic coil was used to magnetize the micromagnets.19 We then captured different concentrations of magnetic beads as surrogates for cells (8.4 μm polystyrene, Spherotech, Inc.) and found that higher bead concentrations did not affect the capture accuracy (>95%; see supplementary material16).Open in a separate windowFIG. 3.Programmed pairing of magnetic beads and CD3+ lymphocytes. (a) Schematic of the magnetographic cell pair isolations. (b) Polarized micromagnets isolate cells of one type to one side in a vertical magnetic field and then cells of a second type to the other side when the field is reversed. (c) Fluorescent image of magnetically trapped green stained (top) and red stained (bottom) cell pairs. (d) SEM image of magnetically labeled cells in the microwells. (e) Capture accuracy of magnetic bead pairs. (Each color (and shape) represents the field strength of the reversed field.) (f) Change in the capture accuracy (loss) of initially captured beads after reversing the magnetic field. The capture accuracy of (g) magnetically labeled cell pairs and (h) the second magnetically labeled cell (for (e)–(h): n = 5; time starts from the deposition of the second set of cells or beads).The opposite side of each micromagnet was then populated with the second (yellow fluorescent) bead by reversing the direction of the applied magnetic field. We tested several field strengths (i.e., 10, 25, 40, or 55 G) to optimize the conditions for isolating the desired bead in the opposite well without ejecting the first bead. If the field strength was too large, the previously deposited beads could be ejected from their wells due to the repulsive magnetic force overcoming gravity.12 As shown in Figure 3(e), increasing the field strength from 10 to 25 G significantly increased the capture accuracy at 60 min from the deposition of the second bead (p < 0.01), but increases from 25 to 55 G did not affect the capture accuracy (p > 0.10). As shown in Figure 3(f), higher field strengths (i.e., 40 and 55 G) resulted in lower capture accuracies compared to lower field strengths (i.e., 10 and 25 G) (p < 0.01), which was primarily due to ejection of the initially captured beads when the micromagnets reversed their polarity.We then arranged pairs of membrane dyed (calcein AM, Invitrogen; PKH26, Sigma) magnetically labeled CD3+ lymphocytes. First, red stained cells (150 μl of 2 × 104 cells/ml) were deposited on the microchip in the presence of 250 G vertical magnetic field. After 20 min, the field was reversed (i.e., to 40, 55, and 70 G) and green stained cells (150 μl of 2 × 104 cells/ml) were deposited on the microchip with images taken in 10 min intervals. Fluorescence images were overlaid (Fig. 3(c)) and the capture accuracy of cell pairs was determined (ImageJ).As seen in Figure 3(g), the capture accuracy of pairs of CD3+ lymphocytes was lower than that of magnetic beads (Fig. 3(e)). However, as shown in Figure 3(h), the second set of cells (green fluorescent) exhibited an average capture accuracy of 91.8% ± 1.9%. This indicates that the lower capture accuracy of cell pairs was either due to the ejection of initially captured (red fluorescent) cells or the migration of initially captured cells through the connecting channel, resulting from their relatively high deformability compared to magnetic beads.In summary, we developed a simple device capable of organizing magnetic particles, cells, and pairs of cells into well-defined compartments. A major advantage of this system is the use of specific magnetic labels to both isolate cells and program their deposition. While the design of this device does not enable dynamic control of the spacing between captured cell pairs as does some dielectrophoresis-based devices,20 it can easily capture cells with high fidelity using only permanent magnets and has clinical relevance in the assessment of immune parameters. These demonstrations potentiate a relatively simple and robust device where highly organized spatial arrangement of cells facilitates rapid and accurate analyses towards a functional and low-cost point-of-care device.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号