首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This paper is concerned with the problem of event-triggered dynamic output-feedback H control for networked control system with sensor and actuator saturations. The event-triggered scheme combined with sensor saturation is first introduced to judge whether the newly sampled signal should be transmitted to the dynamic output-feedback controller or not. Under this scheme, the concurrent closed-loop system is first modeled as a control system with an interval time-varying delay and nonlinear items. Through constructing the Lyapunov–Krasovskii functional and employing linear matrix inequality approach, sufficient conditions for H asymptotical stability are derived for the networked control system; furthermore, under the above stability condition, a dynamic output-feedback controller and the corresponding event-triggered parameters are co-designed through linear matrix inequality approach. Lastly, a numerical example is employed to prove the practical utility of this method.  相似文献   

2.
This paper develops a robust state-feedback controller for active suspension system with time-varying input delay and wheelbase preview information in the presence of the parameter uncertainties. By employing system augmentation technique, a multi-objective control optimization model is first established and then this controller design is converted to a static full-state feedback controller design with robust H and generalized H2 performance, wherein the model-dependent control gain is evaluated by transforming the related nonlinear matrix inequalities into their corresponding linear matrix inequality forms based on Lyapunov theory, and then LMI (Linear-Matrix-Inequality) technique is applied to solve and obtain the desired controller. A numerical simulation case is finally provided to reveal the effectiveness and advantages of the proposed controller.  相似文献   

3.
An improved memory-event-triggered control for networked control systems   总被引:1,自引:0,他引:1  
In this paper, the H control problem is investigated for a class of networked control systems with network-induced delay. A memory event-triggered scheme (METS) is proposed to reduce the redundant packet transmission in the network channel. Different from the normal event-triggered scheme (ETS), some recent released packets are stored at the event generator and controller sides, which are utilized for the first time to generate the triggered events and design the memory-based controller. The proposed METS has the following two merits. (1) The information of certain recent released signals are first utilized, which helps to improve the triggering instants at the crest or trough of the responses. (2) A state-dependent time-varying threshold parameter is designed, which can adjust the packet transmission rate according to the information of the state. Based on the proposed METS, a memory event-triggered controller is designed, the controller feedback gains and triggering parameters can be co-designed by solving a set of linear matrix inequalities. Finally, an example is given to illustrate the effectiveness of the proposed method.  相似文献   

4.
This paper is concerned with the reliable event-triggered H output control of nonlinear systems with actuator faults. A dynamic triggering scheme depending on system outputs is implemented to reduce the amount of communication transmissions, which is different from existing constant triggering thresholds. The parameters of actuator faults are estimated via observer state. To compensate for the fault effects on systems, the reliable controller parameters are adjusted along with the obtained estimations. By using some technical lemmas, new sufficient conditions for the closed-loop system to be asymptotically stable with prescribed H performance are formed in linear matrix inequalities. Lastly, simulations are implemented to demonstrate the validity of the proposed method.  相似文献   

5.
This paper is concerned with the problem of discrete-time event-triggered H control for networked cascade control systems (NCCSs) with time-varying network-induced delay. First of all, an event-triggered scheme is introduced to this system for reducing the unnecessary waste of limited network bandwidth resources. Considering the effect of time-varying delay, a new mathematical model for this system is constructed. In this paper, based on the model and Lyapunov functional method, the co-design method of event-triggered parameter, state feedback primary controller and secondary controller with H performance is derived via linear matrix inequality technique. To illustrate the effectiveness of the proposed method, a simulation example considering a main steam temperature cascade control system is given. The proposed method emphasizes the application in the corresponding industrial control systems, it can be found that this method is superior to the one in some existing references, and the provided example demonstrates the effectiveness of the co-design method in the networked cascade control systems with event-triggered scheme.  相似文献   

6.
This paper is concerned with the decentralized event-triggered H control for switched systems subject to network communication delay and exogenous disturbance. Depending on different physical properties, the system state is divided into multiple communication channels and decentralized sensors are employed to collect signals on these channels. Furthermore, decentralized event-triggering mechanisms (DETMs) with a switching structure are proposed to determine whether the sampled data needs to be transmitted. In particular, an improved data buffer is presented which can guarantee more timely utilization of the sampled data. Then, with the proposed DETMs and data buffer, a time-delay closed-loop switched system is developed. After that, sufficient conditions are presented to guarantee the H performance of the closed-loop switched system by utilizing the average dwell time and piecewise Lyapunov functional method. Since the event-triggered instants and the switching instants may stagger with each other, the influence of their coupling on the H performance analysis is systematically discussed. Subsequently, sufficient conditions for designing the event-triggered state feedback controller gains are provided. Finally, numerical simulations are given to verify the effectiveness of the proposed method.  相似文献   

7.
In this paper, the H control problem of periodic piecewise systems with polynomial time-varying subsystems is addressed. Based on a periodic Lyapunov function with a continuous time-dependent Lyapunov matrix polynomial, the H performance is studied. The result can be easily reduced to the conditions for periodic piecewise systems with constant subsystems or linear time-varying systems based on a common Lyapunov function or a linear time-varying Lyapunov matrix. Moreover, an H controller with time-varying polynomial controller gain is proposed as well, which could be directly solved with the linear matrix inequalities. A numerical example is presented to demonstrate the effectiveness of the proposed method.  相似文献   

8.
This paper is concerned with the event-triggered H state estimation problem for a class of discrete-time complex networks subject to state saturations, quantization effects as well as randomly occurring distributed delays. A series of Bernoulli distributed random variables is utilized to model the random occurrence of distributed delays. For the energy-saving purpose, an event-triggered mechanism is proposed to decide whether the current quantized measurement should be transmitted to the estimator or not. For the state-saturated complex networks, our aim is to design event-triggered state estimators that guarantee both the exponential mean-square stability of and the H performance constraint on the error dynamics of the state estimation. Stochastic analysis is conducted, in combination with the Lyapunov functional approach, to derive sufficient conditions for the existence of the desired estimators whose gain matrices are obtained by solving a set of matrix inequalities. An illustrative example is exploited to show the usefulness of the estimator design algorithm proposed.  相似文献   

9.
In this paper, the problem of asynchronous H filtering for singular Markov jump systems with redundant channels under the event-triggered scheme is studied. In order to save the resource of bandwidth limited network and improve quality of data transmission, we utilize event-triggered scheme and employ redundant channels. The redundant channels are modeled as two mutually independent Bernoulli distributed random variables. To formulate the asynchronization phenomena between the system modes and the filter modes, the hidden Markov model is proposed so that the filtering error system has become a singular hidden Markov jump system. The criterion of regular, causal and stochastically stable with a certain H performance for the filtering error system has been obtained. The co-design of asynchronous filter and the event-triggered scheme is proposed in terms of a group of feasible linear matrix inequalities. Two examples are given to show the effectiveness of the proposed method.  相似文献   

10.
This paper is concerned with the event-triggered dynamic output feedback tracking control for large-scale interconnected systems with disturbances. For each node, a novel event-triggered mechanism is driven by local relative output tracking error to determine whether the signal will be transmitted. A two-step optimization is applied for dynamic output feedback controller design which guarantees robust stability of the system with an optimal H disturbance attenuation level. Finally, a simulation example of master-slave multiple vehicles is given to illustrate the effectiveness of the proposed scheme.  相似文献   

11.
This paper proposes a fuzzy non-fragile finite frequency H control algorithm for the active suspension system (ASS) of the electric vehicles driven by in-wheel motors with an advanced dynamic vibration absorber (DVA). Firstly, an interval type-2 Takagi-Sugeno (T-S) fuzzy model is established to formulate the nonlinear time-delay ASS with the uncertainties of sprung mass, unsprung mass, suspension stiffness, and tire stiffness. Secondly, a differential evolution (DE) algorithm is adopted to optimize the parameters of vehicle suspension and DVA. Thirdly, a non-fragile finite frequency H control controller is developed under the consideration of controller perturbation and input delay to improve the comprehensive performance of the chassis under the finite frequency external disturbances. Finally, simulation tests are carried out to verify the effectiveness of the proposed controller.  相似文献   

12.
This study investigates the problem of robust tracking control for interconnected nonlinear systems affected by uncertainties and external disturbances. The designed H dynamic output-feedback model reference tracking controller is parameterized in terms of linear matrix inequalities (LMIs), which is formulated within a convex optimization problem readily implementable. The resolution of such a problem, guarantying not only the quadratic stability but also a prescribed performance level of the resulting closed-loop system, enables to calculate concurrently the robust decentralized control and observation gain matrices. The established LMI conditions are computed in a single-step resolution to obtain all the controller/observer parameters and therefore to overcome the problem of iterative algorithm based on a multi-stage resolution leading in most cases to conservative and suboptimal solutions. Numerical simulations on diverse applications ranging from a numerical academic example to coupled inverted double pendulums and a 3-strongly interconnected machine power system are provided to corroborate the merit of the proposed control scheme.  相似文献   

13.
This paper addresses the problem of robust integrated fault estimation (FE) and fault-tolerant control (FTC) for a class of discrete-time networked Takagi–Sugeno (T–S) fuzzy systems with two-channel event-triggered schemes, input quantization and incomplete measurements. The incomplete information under consideration includes randomly occurring sensor saturation and randomly occurring quantization. In order to save the limited networked resources, this paper firstly proposed a novel dynamic event-triggered scheme on the sensor side and a static one on the controller side. Secondly, an event-triggered FE observer for the T–S fuzzy model is designed to estimate actuator faults and system states, simultaneously. Then, a specified discrete sliding surface in the state-estimation space is constructed. By using time-delay analysis technique and considering the effects of event-triggered scheme, quantization, networked conditions, actuator fault and external disturbance, the sliding mode dynamics and error dynamics are unified into a new networked time-delay model. Based on this model, sufficient conditions are established such that the resulting augmented fuzzy system is stochastically stable with a prescribed H performance level with a single-step linear matrix inequality (LMI) formulation. Furthermore, an observer-based sliding mode controller for reaching motion is synthesized to guarantee the reachability of the sliding surface. Finally, a single-link flexible manipulator example is present to illustrate the effectiveness of the proposed method.  相似文献   

14.
This paper is concerned with reliable H?control for saturated linear Markov jump systems with uncertain transition rates and asynchronous jumped actuator failure. The actuator failures are assumed to occur randomly under the Markov process with a different jumping mode from the system jumping mode. In considering the mixed-mode-dependent state feedback controller, both H stochastic stability analysis for closed-loop system with completely accessible transition rates and uncertain transition rates are investigated. Moreover, based on the obtained stability conditions, the H?control problems are investigated, and the controller gains can be obtained by solving a convex optimization problem with minimizing H performance as objective and linear matrix inequalities (LMIs) as constraints. The problem of designing state feedback controllers such that the estimate of the domain of attraction is enlarged is also formulated and solved as an optimization problem with LMI constraints. Simulation results are presented to illustrate the effectiveness of the proposed results.  相似文献   

15.
In this paper, the event-triggered distributed H state estimation problem is investigated for a class of state-saturated systems with randomly occurring mixed delays over sensor networks. The mixed delays, which comprise both discrete and distributed delays, are allowed to occur in a random manner governed by two mutually independent Bernoulli distributed random variables. In order to alleviate the communication burden, an event-triggered mechanism is utilized for each sensor node to decide whether or not its current information should be broadcasted to its neighbors. The aim of this paper is to design event-triggered state estimators such that the error dynamics of state estimation is exponentially mean-square stable with a prescribed H performance index. By resorting to intensive stochastic analysis, sufficient conditions are first derived to guarantee the existence of the desired estimators, and the parameters of the desired distributed estimators are then obtained in light of the feasibility of a certain set of matrix inequalities. A numerical example is employed to illustrate the usefulness of the proposed distributed estimation algorithm.  相似文献   

16.
This paper discusses the problem of H finite time control for a discrete time-varying system with interval time-varying delay. By constructing a new augmented time-varying Lyapunov functional involving triple summation items and using discrete Wirtinger-type inequalities, delay-dependent conditions are derived, which guarantee that the closed-loop system is not only finite time bounded (FTB) but also satisfies an H performance. Furthermore, the time-varying feedback controller can be derived by solving a series of recursive linear matrix inequalities (RLMIs). Simulation results show the effectiveness and superiority of the proposed method.  相似文献   

17.
The H filtering problem for distributed parameter systems with stochastic switching topology is investigated in this paper based on event-triggered control scheme. The switching topology which subjects to a Markovian chain is considered in filter design because of the communication uncertainty of practical networks. An event-triggered mechanism as a sampling scheme is developed aiming at the benefit of reducing the computation load or saving the limited network resources. Based on some novel integral inequalities, the improved delayed method is proposed for the H filtering control problem with event-triggered scheme. Moreover, by employing stochastic stability theory, filters with Markovian jump parameters are designed to guarantee that the stochastically mean square stability and H performance of the underlying error system. Finally, in order to illustrate the applicability of the obtained results, numerical examples are presented.  相似文献   

18.
This paper is concerned with the strong γc-γcl H stabilization problem for networked control systems (NCSs) subject to denial of service (DoS) attacks, which are common attack behaviors that affect the packet transmission of measurement or control signals. The purpose of the problem under consideration is to design a stable dynamic output feedback (DOF) controller (strong stabilizing controller) with the prescribed H performance norm bound γc to tolerate multiple packet dropouts caused by DoS attacks, such that, the closed-loop system is mean-square stable and captures the H disturbance attenuation norm bound γcl. Based on the Lyapunov functional and the stochastic control approach, some sufficient conditions with the form of matrix inequalities for the existence of the desired stable DOF controller are established. Then, by an orthogonal complement space technique, the controller gain is parameterized. Next, an iterative linear matrix inequality (LMI) algorithm is developed to obtain the controller gain. Finally, the usefulness of the proposed method is indicated by a numerical simulation example.  相似文献   

19.
This paper is concerned with the observer-based H finite-time control problem for linear parameter-varying (LPV) systems with parameter-varying time delays and external disturbance. The main contribution is to design an observer-based H finite-time controller such that the resulting closed-loop system is uniformly finite-time bounded and satisfies a prescribed H disturbance attenuation level in a finite-time interval. By using the delay- and parameter-dependent multiple Lyapunov–Krasovskii functional approach, sufficient criteria on uniform H finite-time stabilization via observer-based state feedback are presented for the solvability of the problem, which can be tackled by a feasibility problem in terms of linear matrix inequalities. Finally, numerical examples are given to illustrate the validity of the proposed theoretical results.  相似文献   

20.
This paper is concerned with the finite-time stability, boundedness and H control problems for a class of switched stochastic systems. Using the average dwell time method and the multiple Lyapunov-like function technique, some sufficient conditions are proposed to guarantee the finite-time properties for the switched stochastic systems in the form of matrix inequalities. Also, a state feedback controller for the finite-time H control problem is obtained. An example is employed to verify the effectiveness of the proposed method.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号