首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
错在哪里     
题 设二次函数y=(a b)x~2 2cx-(a-b),其中a、b、c是△ABC的三边,且b≥a,b≥c,若二次函数图象与x轴有交点,试确定∠B的范围.解 由题设得a~2 c~2-b~2≥0(?)cosB=a~2 c~2-b~2/2ac≥0(?)0°相似文献   

2.
由完全平方公式,得(a-b)2=a2-2ab+b2,(b-c)2=b2-2bc+c2,(c-a)2=c2-2ca+a2,∴(a-b)2+(b-c)2+(c-a)2=2(a2+b2+c2+ab-bc-ca),∴a2+b2+c2-ab-bc-ca=12[(a-b)2+(b-c)2+(c-a)2].这是一个非常重要的等式,巧用它,某些代数题的解答可变得简易、迅捷.例1如果a=1999x+2001,b=1999x+2002,c=1999x+2003,那么a2+b2+c2-ab-bc-ca的值是().(A)1;(B)2;(C)3;(D)4.解:已知三等式两两相减,得a-b=-1,b-c=-1,c-a=2.原式=12[(a-b)2+(b-c)2+(c-a)2]=3.例2若a、b、c是不全相等的任意有理数,且x=a2-bc,y=b2-ca,z=c2-ab,则x、y、z().(A)都小于0;(B)都大于0;(C)至少有…  相似文献   

3.
20 0 3年中国数学奥林匹克 (CMO)最后一题为 :设 a,b,c,d∈ (0 ,+∞ ) ,满足 ab+cd= 1,点 Pi(xi,yi) (i=1,2 ,3,4 )是以原点为圆心的单位圆周上的四个点 .求证 :(ay1 +by2 +cy3 +dy4) 2 +(ax4+bx3 +cx2 +dx1 ) 2≤ 2 (a2 +b2ab +c2 +d2cd ) .文 [1]提供了一种证明方法 .本文给出构造函数与构造向量两种构造性证明 ,巧妙简易 .证法 1  (构造函数 )设 f (x) =(ax- y1 ) 2 +(bx- y2 ) 2 +(cx- y3 ) 2 +(dx- y4) 2=(a2 +b2 +c2 +d2 ) x2 - 2 (ay1 +by2 +cy3+dy4) x+(y21 +y22 +y23 +y24) ,由于 f(x)≥ 0 ,所以Δ≤ 0 ,即 4 (ay1 +by2 +cy3 +d…  相似文献   

4.
我在复习课中,对调动学生主动性,培养逻辑思维能力训练上做了一些尝试。下面就一道例题的复习,谈谈我是如何引导学生严格地从已知条件推出所要求的结论,正确地使用数学术语、符号和表达方式,既复习了基础知识,又提高了能力的。例设二次函数y=(a+b)x~2+2cx-(a-b),其中a、b,c为△ABC的三边。(1)当B为钝角时,试证这个二次函数的图象与x轴没有交点;(2)当x=-1/2时,y最小=-a/2,问△ABC的形状。这是一个综合题,若叫我们一般校的学生自己做,显然是不可能的,也会使他们精神涣散、失去信心。若按我的思维去灌给学生,表面看来,教师讲得顺利,学生也听得明白,然而学生只起了录音带的作用。忽略了思维能力训练,将导致顶多是照猫画虎,  相似文献   

5.
二次函数的一般形式是:y=ax~2+bx+c(a≠0),经配方,得y=a(x+(b/2a))~2+(4ac-b~2)/4a,设b/2a=m,(4ac-b~2)/4a=k 变式一:y=a(x+m)~2+k(a≠0) 二次函数图象的顶点坐标是(-m,k),对称轴方程是x=-m,即当x=-m时,函数y取得最大值(a>0)或最小值(a<0),“最”值是k。 若抛物线y=ax~2+bx+c(a≠0)与x轴有交点(x_1,0)、(x_2,0)(x_1=x_2时相切),即方  相似文献   

6.
设x1、x2是关于x的一元二次方程ax2+bx+c=0(a≠0)的两个实数根,那么x1=(-b+(b2-4ac))/2a,x2=(-b-(b2-4ac))/2a,x1+x2=-(b/a),x1·x2=c/a,由此,得  相似文献   

7.
设a,b,c为三角形的三边长,证明: ∑a~2b(a-b)≡a~2b(a-b)+b~2c(b-c)+c~2a(c-a)≥0 (1) 这是第24届IMO的一道试题. 经探讨,我们得到了与(1)类似的如下不等式: ∑a~3b(a-b)≥0 (2) ∑a~4b(a-b)≥0 (3) 证令a=y+z,b=z+x,c=x+y,并记σ_1=x+y+z,σ_2=xy+yz+zx,σ_3=xyz(x,y,z>0),则∑a~3b(a-b)=∑(σ_1-x)~3(z+x)(y-x)=∑(σ_1-x)~3(σ_2-x~2-2xz)=σ_2∑(σ_1~3-3σ_1~2x+3σ_1x~2-x~3)-∑(x+2z)(σ_1~3x-3σ_1~2x~2+3σ_1x~3-x~4)  相似文献   

8.
一元二次方程根的判别式是初中数学中的一个重要内容,应用其解题是初中数学中的一种重要方法.在近年来全国各省市数学竞赛中屡见不鲜,本文举例说明其广泛应用,供参考.一、求参数值例1(2003年全国初中数学竞赛天津赛区初赛)已知二次函数y=ax2+bx+c,一次函数y=k(x-1)-k24,若它们的图象对于任意的实数k都只有一个公共点,则二次函数的解析式为.解:由题意得y2=ax+bx+cy=k(x-1)-k24整理得:ax2+(b-k)x+(c+k+k24)=0.又由根的判别式Δ=(b-k)2-4a(c+k+k24)=0,即(1-a)k2-2(b+2a)k+(b2-4ac)=0.(1)由于(1)中对任意的实数k均成立,故解得a=1,b=-2,c=1.二、…  相似文献   

9.
关于因式分解的常用方法,中学课本中已作了介绍。本文要探讨的是根据题目的特征,运用比较特殊的方法,进行因式分解的问题。例1 在复域内分解: (x+1)(x+2)(x+3)(x+6)-3x~2 解原式=(x~2+7x+6)(x~2+5x+6)-3x~2推敲上式的特征,可知若令y=x~2+6x+6,原式就化为: (y+x)(y-x)-3x~2 =y~2-4x~2=(y+2x)(y-2x) =(x~2+8x+6)(x~+4x+6) =(x+4-10~(1/2))(x+4+10~(1/2)) (x+2-(2~(1/2))i)(x+2-(2~(1/2))i) 例2分解:(ab+1)(a+1)(b+1)+ab 解原式即(ab+1)[ab+1+a+b]+ab,若令(ab+1)=A,可得: 原式=A(A+a+b)+ab =A~2+(a+b)A+ab=(A+a)(A+b)  相似文献   

10.
在解或判别实系数一元二次方程(或可化为此类方程)时,根的判别式Δ=b2-4ac起着极大的作用.实系数二次函数y=ax2+bx+c(a≠0)有很多性质,其中当且仅当Δ=b2-4ac≤0时,y=ax2+bx+c保号.如果在实系数二次函数y=ax2+bx+c(a≠0)中,将系数a,b,c都改为对某些变量的实质函数,就可得到“广义判别式”的概念.即:设a=f(x,y),b=g(x,y),c=φ(x,y)都是以x,y为未知数的一个二元方程,则称Δ=b2-4ac为二元方程ax2+bx+c=0的“广义判别式”.1利用“广义判别式”可判断二元实函数系数方程根的情况实系数一元二次函数y=ax2+bx+c(a≠0)的保号性可以推广到关于x,y的二…  相似文献   

11.
对于实数集上的有理分函数y=(ax~2+bx+c)/(a'x~2+b'x+c') (1)其中分于与分母是互质的多项式(或单项式),且a与a'都不是零。关于求这类有理分函数的极值,书[1]中介绍了如下的判别式法:将(I)化归为x的二次分程:(a—a'y)x~2+(b—b'y)x+(c—c'y)=0若y有极值,x必须为实数,所以Δ=(b—b'y)~2—4(a—a'y)(c—c'y)≥0  相似文献   

12.
(接上期)考点7二次函数的概念、图象及其性质[知识要点]1.函数y=(a,b,c是常数,a≠0)叫做二次函数.当a≠0,b=c=0时,则y=;当a≠0,b=0,c≠0时,则y=;当仅有c=0时,则y=.这些函数都叫做.把二次函数y=ax2+bx+c(a≠0)通过配方写成y=a()2+,由此可知对称轴是,顶点坐标是(,).2.二次函数y=ax2+bx+c(a≠0)的图象是一条;当a>0时,开口向,当x=时,函数有值;当a<0时,开口向,当x=时,函数有值.3.对于二次函数y=ax2+bx+c(a≠0),a确定图象的,c确定图象与y轴的交点坐标是,Δ=b2-4ac确定图象与轴是否相交,当Δ>0时,抛物线与x轴有两个不同交点,当Δ=0时,抛物线与x轴只…  相似文献   

13.
正一、案例分析题目:已知二次函数f(x)=ax~2+bx+c的图像过点(-1,0),问是否存在常数a,b,c,使不等式x≤f(x)≤1/2(1+x~2)对一切x∈R都成立?此题不仅在辅导资料上流传甚广,而且它有一种奇妙的解法也比较流行,那就是:对于不等式x≤f(x)≤1/2(1+x~2),令x=1,得到1≤f(1)≤1,从而知f(1)=1,即a+b+c=1①;然后根据二次函数f(x)=ax~2+bx+c的图像过点(-1,0),知a-b+c=0②,由①、②知b=1/2,a+c=  相似文献   

14.
一、纯粹利用判别式求函数y=ax~2+bx+c/mx~2+nx+l值域的可靠性。 [例1]求函数y=5/2x~2+5x+3的值域。解:把原式变形成2yx~2+5yx+3y-5=0 ①∵ x为实数:△=(5y)~2-4(2y)(3y-5)≥0 解得 y≥0或y≤-40 即所求值域为:{y∶y≥0}∪{y∶y≤-40}。但由原函数显然可知y≠0,所以上面求得的值域并不可靠。 [例2]求函数y=x~2-x-2/2x~2-6x+4的值域。解:把原式变形成 (2y-1)x~2+(1-6y)x+4y+2=0 ②∵ x为实数,∴△=(1-6y)~2-4(2y-1)(4y+2)=(2y-3)~2≥0 ∵所求值域为y∈R事实上,y=(x~2-x-2)/(2x~2-6x+4)=((x-2)(x+1))/(2(x-2)(x-1))  相似文献   

15.
因为二次函数y=ax2+bx+c(a≠0)的图象与a,b,c,△有关系,所以由二次函数的大至图象就能确定二次函数中的系数和△的关系.现举例说明.例1已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,则下列结论1b2-4ac<0,2ab>0,3a-b+c=0,44a+b=0,5当y=2时,x只能有一个值.其中正确是()  相似文献   

16.
<正>本文介绍二次函数零点的几个有趣性质,并举例说明它的应用,供同学们欣赏.设二次函数y=ax2+bx+c(a≠0,Δ=b2-4ac>0)的两个零点为x1,x2(x1相似文献   

17.
换元法是数学中的一个重要的思想方法。就是将代数式中的某一部分用一个新字母(元)来替换。此法用于多项式的因式分解,能使隐含的因式比较明朗地显示出来,从而为合理分组、运用公式等提供条件,使问题化难为易。例1分解因式(x2+xy+y2)2-4xy(x2+y2)。解:设x2+y2=a,xy=b,则原式=(a+b)2-4ab=(a-b)2=(x2-xy+y2)2。例2分解因式(x+y-2xy)(x+y-2)+(xy-1)2。解:设x+y=a,xy=b,则原式=(a-2b)(a-2)+(b-1)2=a2-2ab-2a+4b+b2-2b+1=(a-b)2-2(a-b)+1=(a-b-1)2=(x+y-xy-1)2=〔(1-y)(x-1)〕2=(y-1)2(x-1)2。例3分解因式(x2-4x+3)(x2-4x-12)+56。解:设x2-4x=y,…  相似文献   

18.
联想是以观察为基础,对研究的对象或问题,联想已有的知识和经验进行形象思维的方法.通过联想,构造相应的条件,从而解决问题.【例】 设x、y∈R+,且x+y=1,求证:(x+2)2+(y+2)2≥252.联想一:巧用“a2+b2≥2ab”法1:直接法由x+y=1,得(x+2)2+(y+2)2=x2+y2+4x+4y+8=(x+y)2+4(x+y)+8-2xy=13-2xy又∵x、y∈R+,由均值不等式,∴x+y≥2xy,即xy≤14,则-2xy≥-12.故(x+2)2+(y+2)2=13-2xy≥13-12=252.证毕.法2:间接法令a=x+2,b=y+2,则a+b=(x+2)+(y+2)=x+y+4=5(定值)∵a2+b2≥2ab,两边同时加上a2+b2得a2+b2≥(a+b)22即(x+2)2+(y+2)2≥[(x+2)+(y+2)]22=252.…  相似文献   

19.
文[1]中给出了两个命题:命题1是(x-x1)2+(y-y1)2≥(x2+y2-x12+y21)2.1这个命题虽然是正确的,但是文[1]中借助于向量方法设a=(x,y),b=(x1,y1),然后利用不等式a-b≥a-b导出1,这是不妥当的.如果修正为利用不等式a-b≥a-b,进而有a-b 2≥(a-b)2,然后最终得出1,那就没有问题了.命题2是(x-∑ni=1xi)2+(y-∑ni=1yi)2≥(x2+y2-∑ni=1xi2+y2i)2.2这个命题是一个错误的命题.例如取n=2,x=y=1,x1=y1=-1,x2=y2=2,则2的左端等于0,右端等于8,所以2式不成立.为什么会产生这个错误呢?原因是,依原文中用向量方法推导,当令a=(x,y),b=∑ni=1ci,ci=(xi,yi)时,虽然…  相似文献   

20.
对于不等式的证明 ,课本着重介绍了比较法、综合法、分析法 .其实 ,构造二次函数f(x) =ax2 +bx +c(a>0 ) ,利用f(x) ≥ 0恒成立的充要条件Δ≤ 0和 f(x) >0恒成立的充要条件Δ<0来证明 ,也是一种行之有效的方法 .下面以新教材第二册 (上 )课本中的几个习题为例加以说明 .一、若 f(x) =ax2 +bx+c≥ 0 (a>0 ) ,则Δ =b2 -4ac≤ 0例 1 求证 :(ac +bd) 2 ≤ (a2 +b2 ) (c2 +d2 ) .证明 构造二次函数 f(x) =(a2 +b2 )x2 +2 (ac+bd)x +(c2 +d2 ) .当a ,b全为零时 ,不等式显然成立 .设a ,b不全为零 .∵a2 +b2 >0且 f(x) =(ax+c) 2 +(bx+d) 2 ≥ 0…  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号