首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 421 毫秒
1.
能取等号吗?     
函数 y=f(x)在 x=x_0处有极值,则它的导数 f′(x)在这点的函数值为零,即 f′(x_0)=0,反过来,函数 y=f(x)的导数在某点的函数值为零时,这点却不一定是函数的极值点.因此,我们必须具体问题具体分析.例1 已知 b>-1,c>0,函数 f(x)=x b 的图象与函数 g(x)=x~2 bx c 的图像相切.(1)求 b 与 c 的关系(用 c 表示 b)(2)设函数 F(x)=f(x)g(x)在(-∞, ∞)内有极值点,求 c 的取值范围.分析:(1)(略);(2)函数 F(x)=f(x)·g(x)在(-∞, ∞)内有极值点,即存在 x_0使F′(x_0)=0,亦即一元二次方程 F′(x)=0有实  相似文献   

2.
<正>一、求极值利用可导函数求函数极值的基本方法:设函数y=f(x)在点x_0处连续且f'(x)=0。若在点x_0附近左侧f'(x)>0,右侧f'(x)<0,则f(x_0)为函数的极大值;若在点x_0附近左侧f'(x)<0,右侧f'(x)>0,则f(x_0)为函数的极小值。  相似文献   

3.
设y=f(x)为可导函数。①在某个区间内,如果f(x)>0,则f(x)为增函数;如果f′(x)<0,则f(x)为减函数,反之亦然。②函数f(x)在某点取得极值的充要条件是该点的导数为零且该点两侧的导数异号。③函数f(x)在点x_0处的导数f′(x_0)是曲线y=f(x)在点(x_0,f(x_0))处切线的斜率。运用上述性质可解决下面几类问题。  相似文献   

4.
导数是新教材第三册(选修Ⅱ)中的新添内容之一,教材主要介绍了导数在解题中判断函数单调及求函数极值与最值的应用,本文结合具体实例,就导数在解题中其它方面的几点应用作一下归纳,仅供读者参考.1判断函数图象例1设函数y=f(x)在定义域内可导,其图象如右图所示,则其导函数y=f′(x)的图象为()分析由y=f(x)的图象可以看出,当x<0时,y=f(x)是单调递增函数,由此可得:对任意x<0,f′(x)>0恒成立;所以可以排除(A)、(C);又因为x>0时,y=f(x)有两个极值点,所以x>0时,f′(x)=0有两个不等实根,且在两根左右两侧,f′(x)符号相反,因此答案应选(D).2化简例2…  相似文献   

5.
题目 (2005年,辽宁,理科第22题)函数 y=f(x)在区间(0,+∞)内可导,导函数 f′(x)是减函数,且 f′(x)>0.设 x_0∈(0,+∞),y=kx+m 是曲线y=f(x)在点(x_0,f(x_0))处的切线的方程,并设函数g(x)=kx+m.(Ⅰ)用 x_0、f(x_0)、f′(x_0)表示m;(Ⅱ)证明:当 x_0∈(0,+∞)时,g(x)≥f(x);  相似文献   

6.
我们知道,高等数学中对三次函数极值是这样来求的: 设f(x)=x~3 px~2 qx r,则f′(x)=3x~2 2px q. 令f′(x)=0. ①当p~2>3q时,解得由成 当x由小到大经过x_1时,f′(x)由正变负,经过x_2时,f′(x)由负变正. ∴y极大=f(x_1),y极小=f(x_2). ②当P~2=3q时,解得x_1=x_2=-p/3,此时f′(x)≥0恒成立,x由小到大经过-p/3时,f′(x)不变号,故-p/3不是极值点。  相似文献   

7.
<正>导数是高考的必考知识点之一,其主要应用是求函数的单调性、极值和曲线的切线方程,本文主要讨论导数与切线方程。函数f(x)在点x_0处的导数f′(x_0)的几何意义是过曲线y=f(x)上点(x_0,f(x_0))的切线的斜率。函数在某点处的导数是函数相应曲线在该点处的切线的斜率。例1在平面直角坐标系xOy中,若曲线y=ax2+b/x(a,b为常数)过点P(2,-5),且该曲线在点P处的切线与直线7x+  相似文献   

8.
正一、定义本质1.导数的定义:f′(x_0)=limΔx→0Δy/Δx=limΔx→0f(x0+Δx)-f(x0)/Δx.2.导数的几何意义:f′(x_0)表示曲线y=f(x)在点(x_0,f(x_0))处的切线的斜率.从图形直观我们易得:导数其实上是函数曲线上两点连线斜率的极端情形;曲线的切线可看作是过切点的割线的极限位置;具备凹、凸性的函数曲线必位于其相应切线的上、下方.二、构建模型  相似文献   

9.
在判断函数的单调性和求函数的极值时,常常需要判断其导函数在某区间的符号,通常的方法是解不等式,但往往很麻烦困难。如例1 求函数f(x)=e~x+e~(-x)+2cosx的极值。解 f′(x)=e~x-e~(-x)-2sinx,解方程 e~x-e~(-x)-2sinx=0得唯一的驻点为x=0,此时f′(x)在x=0附近的函数值符号不易确定,需求高阶导数才能能判定f(x)在x=0处是否取极值。又如  相似文献   

10.
一、利用导数求单调区间例1已知函数f(x)=x3 bx2 cx d,它的图像过点P(0,2),且在点M(-1,f(-1))处的切线方程为6x-y 7=0.(1)求函数y=f(x)的解析式;(2)求函数y=f(x)的单调区间.解析(1)由函数f(x)的图像过点P(0,2),可知d=2,所以f(x)=x3 bx2 cx 2,则有f′(x)=3x2 2bx c.由函数f(x)在  相似文献   

11.
1问题呈现问题1(2020全国Ⅱ卷文21)已知函数f(x)=2 ln x+1.(1)若f(x)≤2x+c,求c的取值范围;(2)设a>0,讨论函数g(x)=f(x)-f(a)x-a的单调性.问题2(2020天津卷20)已知函数f(x)=x 3+k ln x(k∈R),f′(x)为f(x)的导函数.(1)当k=6时,(i)求曲线y=f(x)在点(1,f(1))处的切线方程;(ii)求函数g(x)=f(x)-f′(x)+9 x的单调区间和极值.  相似文献   

12.
<正>高中数学中导数像是一枚宝贵的工具解决着许多数学问题。学习过程中常常利用导数来求曲线的切线方程,讨论函数的单调性,极值与求最值问题等。一、利用导数求曲线的切线方程因为函数y=f(x)在x=x_0处的导数表示曲线在点P(x_0,f(x_0))处切线的斜率,所以曲线y=f(x)在点P(x_0,f(x_0))处的切线方程可求得。若已知曲线过点P(x_0,f(x_0)),求曲线过点P的切线,则需分点P(x_0,f(x_0))是切  相似文献   

13.
导数是新课标下的新增内容.导数的工具性拓展了导数的学习与研究空间,除了应用导数解决函数的单调性、最值外,在求函数的值域、证明不等式、距离等方面都有广泛的应用,在高考复习时要重视.一、应用导数的定义求函数的极限【例1】已知f(x)=lnx,求极限limx→1f(x)-f(1)x-1的值.解:∵f(x)=lnx,f′(x)=1x,∴limx→1f(x)-1x-1=f′(1)=1.点评:导数定义的等价形式为f′(x0)=limΔx→0f(x0+Δx)-f(x0)Δx=limx→x0f(x)-f(x0)x-x0.二、应用导数的工具性求函数的单调区间、最值及值域【例2】求函数f(x)=xcosx-sinx(x≥0)的单调递增区间.解:f′(x)=-xsi…  相似文献   

14.
导数是高中数学新教材的内容,它作为解题有力的工具使某些问题的求解变得简便.本文选取2004年全国的高考试题,举例介绍应用导数解答高考题的常见类型,供大家参考.  一、求曲线的切线例1  曲线 y=x3 -3x2 +1 在点(1,-1)处的切线方程为(  ).A.y=3x-4    B.y=-3x+2C.y=-4x+3 D.y=4x-5解析  由函数 f(x)=x3 -3x2 +1 导数为f′(x)=3x2-6x,f′(1)=-3,因此得(1,-1)处的切线方程为:y-(-1)=-3(x-1),即y=-3x+2.二、研究函数的单调性例2  已知a∈R,求函数 f(x)=x2eax 的单调区间.解析  函数 f(x)的导数 f′(x)= 2xeax +ax2e…  相似文献   

15.
求一个函数 f(x)的极值,首先应该找出可疑点 x_0(驻点和不可导点),其次,要判断f′(x)在 x_0附近的符号。在 x_0左、右 f′(x)变号,则 x_0为极值点。若 f′(x)自 x_0左至右符号依次为“+、-”,则 x_0为极大值点;若依次为“-、+”,则 x_0为极小值点。那么,如何判断 x_0附近 f′(x)的符号是关键,为此,本文给出一种方法,供读者参考。  相似文献   

16.
<正>导数是由速度问题和切线问题抽象出来的数学概念,又称变化率导数原理:设y是x的函数,记为y=f(x),则取其极值的条件为f′(x)=0,得x=t。将t代入原方程求极值即可。一、导数在经济学中的应用在数学中,通常利用导数来判断函数的单调性,求出函数的极值与最值,而其中求函数的最值与函数的最优化问题有着密切联系。生活中经常遇到求利润最大、用料最省、效率最低等问题,这些问题称为优化问题。  相似文献   

17.
微分学中,费尔马(Fermat)定理、罗尔(Rolle)定理、拉格朗日(Lagrange)定理、柯西(Cauchy)定理和泰勒(Taylor)定理因为都涉及导数在给定区间内的一个中间值,因此把这些定理叫做微分学中值定理。它们是微分学的理论基础。 费尔马定理 若函数f(x)在点x_0的某邻域U(x_0,δ)内有极值,且在点x_0可导,则f(x_0)=0,它的几何意义是如果曲线y=f(x)在点x_0处具有极值且有切线,则切线必为水平的。由费尔马定理可以导出下面的罗尔定理:若函数f(x)在闭区间[a,b]上连续,在开区间(a,b)内可导,且有f(a)=f(b),则在(a,b)内至少有一点ξ,使f(ξ)=0。  相似文献   

18.
阮莉华 《考试》2008,(9):23-24
一、导数的概念及其几何意义【例1】(Ⅰ)若函数f(x)在x=x_0处的导数为A,求lim(?)(f(x_0—3h)—f(x_0))/h;(Ⅱ)求函数f(x)=2xlnx在x=3处的切线方程。  相似文献   

19.
<正>已知连续函数y=f(x)在区间(x_1,x_2)内只有一个极值点x0,且f(x_1)=f(x_2),当函数f(x)的图象不关于直线x=x_0对称性时,极值点x_0偏向x_1(或x_2)一侧,我们称这种现象为极值点偏移.显然,极值点偏移是因为函数在极值点两侧的增减速度不同而造成的,  相似文献   

20.
导数是高等数学的重要概念之一,它是研究可导函数的重要工具.在研究函数的单调性、极值、曲线的切线等方面都有它的一席之地.本文拟通过实例来剖析导数在初等数学中的一些应用.1 研究函数的单调性 利用导数研究函数的单调性,主要是根据下列结论:“设函数 y = f (x) 在某个区间内可导,若 f ′(x) > 0 ,则 f (x) 在此区间内为增函数;若 f ′(x) < 0 ,则 f (x) 在此区间内为减函数”.其一般步骤为:(1)求出导函数 f ′(x) ;(2)令 f ′(x) > 0 ,求出其解集,即为 f (x) 的单调递增区间;令 f ′(x) < 0 ,求出其解集,即 f (x) 的单调递减区间. …  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号