首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
1.直线与椭圆的位置关系直线与椭圆的位置关系有三种:相交、相切、相离.判定方法 1利用椭圆上的点到直线的最短距离判定判定方法 2判别式法例1 m为何值时直线y=x+m与椭圆x~2+4y~2=4相交、相切、相离?解将y=x+m代入x~2+4y~2=4中,得5x~2+8mx+4m~2-4=0.  相似文献   

2.
错在哪里     
题:已知两条直线l_1:x+(1+m)y=2-m,l_2:2mx+4y=-16。(1)当m为何值时,l_1与l_2相交;(2)求直线l_1和l_2交点的轨迹。解 (1)将两直线的方程组成方程组 x+(1+m)y=2-m 2mx+4y=-16 这时 A_1/A_2=1/2m,B_1/B_2=1+m/4。当A_1/A_2≠B_1/B_2 解得m≠1或m≠-2 (2)将两直线的方程组成方程组,消去参数m,得:x~2+xy-2y~2-2x-10y-8=0 即(x-y-4)(x+2y+2)=0  相似文献   

3.
题:“直线y=mx+b(|m|<1)与圆x~2+y~2=1交于P、Q,与双曲线x~2-y~2=1交于R、S,如果P、Q把线段RS三等分,求m、b。”见到一本公开发行的资料中的解答是这样的: 解:P、Q的横坐标x_1、x_2是方程x~2+(mx+b)~2=1的两个根, ∴有x_1+x_2=-2mb/1+m~2 ① x_1·x_2=b~2-1=1+m~2 ② R、S的横坐标x_1′、x_2′是方程x~2-(mx+b)~2=1的两个根,  相似文献   

4.
《考试》2008,(Z1)
《一次函数》测试题一、选择题1.下列函数中,与y=x表示同一个函数的是( ) A.y=(x~2)/x B.y=(x~2)~(1/2) C.y=(x~(1/2))~2 D.y=(x~3)~(1/3) 2.若m<0.n>0,则一次函数y=mx n的图象不经过( ) A.第一象限B.第二象限C.第三象限D.第四象限3.已知函数y=3x 1,当自变量增加m时,相应的函数值增加( ) A.3m 1 B.3m C.m D.3m-1 4.汽车由A地驶往相距120km的B地,它的平均速度是30km/h,则汽车距B地路程s(km)与行驶时间t  相似文献   

5.
一、填空题(本题10小题,前5小题每题6分,后5小题每题8分;共70分) 1.实数x使x-1/x=5~(1/2),则x+1/x=____。 2.若a、b是二次方程x~2-x+g=0的两个根,则a~3+b~3+3(a~3b+ab~3)+6(a~3b~2+a~2b~3)的值是____。 3.设m为实数,方程x~2-5x+m=0有一个根的相反数是方程x~2+mx+5=0的一个根,则m=____。 4.用[a]表示不超过实数a的最大整数,{a}=a-[a]表示a的小数部分,则方程[x~3]+[x~2]+[x]={x}-1的解是____。  相似文献   

6.
一、选择题1.若 f(x)是奇函数,且 x>0时,f(x)=x~2+sin x,则 x<0时,f(x)的表达式是( ).A.x~2+sin x B.-x~2+sin xC.x~2-sin x D.-x~2-sin x2.若 f(x)=(m-1)x~2+2mx+3是偶函数,则f(x)在(-5,-2)上是( ).A.增函数 B.减函数C.增减不定 D.无法确定其增减性3.已知 a>b>c,a+b+c=0.当0相似文献   

7.
在学习“一元二次方程”中,老师出了这样一道讨论题:已知关于x的一元二次方程:①x~2-2mx+m~2-m=0;②x~2-(4m+1)x+4m~2+m=0;③(m~2+1)x~2-(2m+1)x+1=0中至少有一个方程有实数根。试求m的取值范围。  相似文献   

8.
我们知道,与椭圆x~2/a~2+y~2/b~2=1相切于(X_0y_0)点的切线方程是x_0x/a~2+y_0y/b~2=1 ①我们把直线y=kx+(m≠O) ②变形为 -ka~2x/m/a~2+b~2/m~y/b~2=1 ③如果直线②与椭圆也相切于(x_0,y_0)点,则①和③表示同一条直线,所以有 x_0=-ka~2/m,y_0=b~2/m (Ⅰ) 用同样的方法,可类似地求出圆x~2+y~2=r~2双曲线x~2/a~2-y~2/b~2=1和抛物线y~2=2px与  相似文献   

9.
一、函数图象恒过定点问题例1求证:无论m为何值,函数y=-2mx+2(m-1)的图象恒过定点.解取m=0,m=1代入函数解析式,得y=-2y=-2x.  相似文献   

10.
首先来讨论形如:mx2 ny2=1(m,n均为非零常数)的二次曲线C.假设点M(x0,y0)是曲线C的一条弦的中点(其中x0,y0不同时为0),则有如下结论:图1定理1以点M(x0,y0)为中点的弦所在的直线的方程为:mx0(x-x0) ny0(y-y0)=0.证明设弦的两个端点分别为A(x1,y1),B(x2,y2),则x2=2x0-x1,y2=2y0-y  相似文献   

11.
<正><正>直线y=mx+n(m≠0,m,n都是常数)与双曲线y=k/x(k≠0,k为常数)如果有交点,则消去y以后得出的关于x的方程mx2+nx-k=0满足条件n2+4mk≥0.在双曲线与直线相交时,两个交点与原点构成的三角形的面积与系数m,n常数k有关,下面结合2015年湖南邵阳市招考压轴题对构成三角形面积的探究规律问题进行分析,供参考.  相似文献   

12.
一、注意二次项系数不为零 例1 若二次函数y=(m~2-4)x~2+3x+1-m和一次函数y=(m~2-2)z+m~2-3的图象与y轴交点的纵坐标互为相反数则m的值为___。 错解 由题设,得(1-m)+(m~2-3)=0,即 m~2-m-2=0。解得m=2或m=-1。 剖析 上述解法错在忽视了二次项系数不为0这一条件。当m=2时,二次项系数m~2-4=0。此时函数y=(m~2-4)x~2+3x+1-m不是二次函数所以应舍去m=2,正确答案为m=-1。  相似文献   

13.
一、三角函数取值范围的方程求法我们知道在sin~2a+cos~2α=·1中,运用换元,令cosα=x,sinα=y,就是x~2+y2=1.这样就可把求t=F(cosα,sinα)的范围化为在方程组{x~2+y~2}=1F(x,y)=t},中求t的取值范围.例1已知sinαcosβ=1/2,求t=cosαsi的取值范围.解令cosα=x,sinα=y,cosβ=m,sinβ=n,得方程组(?)消去m,n,y(过程略)得4x~4-(4t~2+3)x~2+4t~2=0(0≤x~2≤1)⑤在⑤中解出t~2求值域或解出x~2求定义域或用二次方程实根的分布方法可得0≤t2≤1/4,所以一1/2≤t≤1/2.例2已知sinα+sinβ=1,求t=cosαt+cosβ的取值  相似文献   

14.
用点到直线的距离公式和两点间的距离公式求极值,往往比较简便.下面请看两个例子.[例1]已知3x+4y=5,求x~2+y~2的极小值.[分析]等式3x+4y=5是一条直线的方程,而x~2+y~2则表示平面上的点(x,y)到原点的距离的平  相似文献   

15.
下面就一次函数典型习题举例分析,以扩大读者的视野: 一、函数图象恒过定点问题例1 求证:无论m为何值,函数)y=-2mx+2(m-1)的图象恒过定点. 解:取m=0,m=1代入函数解析式,得y=-2,y=-2x. 解方程所以直线y=-2与y=-2x都过定点  相似文献   

16.
学习二次函数应注意下面几个问题:一、注意函数定义中的条件例1 m为何值时,二次函数y=mx2-(2m+1)x+m的图象与x轴交于两点?解若函数图象与x轴交于两点,则△=[-(2m+1)]2-4m2=4m+1>0  相似文献   

17.
用三角换元法证明不等式是基本方法,根据题意恰当地进行换元,则可使问题快速获解,达到事半功倍的效果.例1设点P(x,y)是圆x~2+(y-1)~2= 1上任意一点,若总有x+y+c≥0,试求c的取值范围.解因为点P(x,y)在圆x~2+(y-1)~2= 1上,故可设x=cosθ,y=1+sinθ,则x+y+c=cosθ+sinθ+1+c≥0恒成立,  相似文献   

18.
众所周知,求分式函数y=ax~2+bx+c/lx~2+mx+n(a、l不同时为零)的值域,可用判别式法。但如果给自变量x以一定的限制,就不能用这一方法,一般须用导数来求解。本文介绍一种比较简便的初等方法。我们知道,关于一元二次方程的实根分布有以下结论:设f(x)=x~2+px+q,则 1.方程f(x)=0在区间(m,+∞)内有根的充要条件为(若把区间(m,+∞)改为[m,+∞),则把前一条件改为f(m)≤0)。 2.方程f(x)=0在区间(m,n)内有根的充要条件为  相似文献   

19.
安徽省1988年“中考”数学试题最后一题是:已知方程2x~2-5mx+3n=0两根之比为2:3,而方程x~2-2nx+8m=0两根相等(m、n是不为零的实数)。求证:k为任何实数时,方程mx~2+(n+k-1)x+(k+1)=0恒有实数根。  相似文献   

20.
美国《数学杂志》2005年二月问题征解1714:设m,n,x,y,z∈R+,且x+y+z=1,证明:44()()()()x ymx+ny my+nx+my+nz mz+ny421()()3()z+mz+nx mx+nz≥m+n.(1)文[1]将其推广为:设λ,ai∈R+(i=1,2,n),且1niia=∑=1,an+1=a1,则当k≥4或k≤0时,有321(1)(1)(1)nk kii i i i ia naλa aλaλ?=++∑++≥+.本文在文[1]的基础上对(1)式进行再推广:命题1设m,n,x,y,z∈R+,且x+y+z=1,α,β,γ∈R+,且α?(β+γ)=2,则()()()()x ymx ny my nx my nz mz nyαα+β+γ++β+γ1()()3()zmz nx mx nz m nα++β+γ≥+β+γ.命题2设m,n,x,y,z∈R+,且x+y+z=1,β,γ,l∈…  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号