首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Linking item parameters to a base scale   总被引:1,自引:0,他引:1  
This paper compares three methods of item calibration??concurrent calibration, separate calibration with linking, and fixed item parameter calibration??that are frequently used for linking item parameters to a base scale. Concurrent and separate calibrations were implemented using BILOG-MG. The Stocking and Lord in Appl Psychol Measure 7:201?C210, (1983) characteristic curve method of parameter linking was used in conjunction with separate calibration. The fixed item parameter calibration (FIPC) method was implemented using both BILOG-MG and PARSCALE because the method is carried out differently by the two programs. Both programs use multiple EM cycles, but BILOG-MG does not update the prior ability distribution during FIPC calibration, whereas PARSCALE updates the prior ability distribution multiple times. The methods were compared using simulations based on actual testing program data, and results were evaluated in terms of recovery of the underlying ability distributions, the item characteristic curves, and the test characteristic curves. Factors manipulated in the simulations were sample size, ability distributions, and numbers of common (or fixed) items. The results for concurrent calibration and separate calibration with linking were comparable, and both methods showed good recovery results for all conditions. Between the two fixed item parameter calibration procedures, only the appropriate use of PARSCALE consistently provided item parameter linking results similar to those of the other two methods.  相似文献   

2.
A computer simulation study was conducted to determine the feasibility of using logistic regression procedures to detect differential item functioning (DIF) in polytomous items. One item in a simulated test of 25 items contained DIF; parameters' for that item were varied to create three conditions of nonuniform DIF and one of uniform DIF. Item scores were generated using a generalized partial credit model, and the data were recoded into multiple dichotomies in order to use logistic regression procedures. Results indicate that logistic regression is powerful in detecting most forms of DIF; however, it required large amounts of data manipulation, and interpretation of the results was sometimes difficult. Some logistic regression procedures may be useful in the post hoc analysis of DlF for polytomous items.  相似文献   

3.
Studies of differential item functioning under item response theory require that item parameter estimates be placed on the same metric before comparisons can be made. The present study compared the effects of three methods for linking metrics: a weighted mean and sigma method (WMS); the test characteristic curve method (TCC); and the minimum chi-square method (MCS), on detection of differential item functioning. Both iterative and noniterative linking procedures were compared for each method. Results indicated that detection of differentially functioning items following linking via the test characteristic curve method gave the most accurate results when the sample size was small. When the sample size was large, results for the three linking methods were essentially the same. Iterative linking provided an improvement in detection of differentially functioning items over noniterative linking particularly with the .05 alpha level. The weighted mean and sigma method showed greater improvement with iterative linking than either the test characteristic curve or minimum chi-square method.  相似文献   

4.
An important assumption of item response theory is item parameter invariance. Sometimes, however, item parameters are not invariant across different test administrations due to factors other than sampling error; this phenomenon is termed item parameter drift. Several methods have been developed to detect drifted items. However, most of the existing methods were designed to detect drifts in individual items, which may not be adequate for test characteristic curve–based linking or equating. One example is the item response theory–based true score equating, whose goal is to generate a conversion table to relate number‐correct scores on two forms based on their test characteristic curves. This article introduces a stepwise test characteristic curve method to detect item parameter drift iteratively based on test characteristic curves without needing to set any predetermined critical values. Comparisons are made between the proposed method and two existing methods under the three‐parameter logistic item response model through simulation and real data analysis. Results show that the proposed method produces a small difference in test characteristic curves between administrations, an accurate conversion table, and a good classification of drifted and nondrifted items and at the same time keeps a large amount of linking items.  相似文献   

5.
Numerous assessments contain a mixture of multiple choice (MC) and constructed response (CR) item types and many have been found to measure more than one trait. Thus, there is a need for multidimensional dichotomous and polytomous item response theory (IRT) modeling solutions, including multidimensional linking software. For example, multidimensional item response theory (MIRT) may have a promising future in subscale score proficiency estimation, leading toward a more diagnostic orientation, which requires the linking of these subscale scores across different forms and populations. Several multidimensional linking studies can be found in the literature; however, none have used a combination of MC and CR item types. Thus, this research explores multidimensional linking accuracy for tests composed of both MC and CR items using a matching test characteristic/response function approach. The two-dimensional simulation study presented here used real data-derived parameters from a large-scale statewide assessment with two subscale scores for diagnostic profiling purposes, under varying conditions of anchor set lengths (6, 8, 16, 32, 60), across 10 population distributions, with a mixture of simple versus complex structured items, using a sample size of 3,000. It was found that for a well chosen anchor set, the parameters recovered well after equating across all populations, even for anchor sets composed of as few as six items.  相似文献   

6.
Various applications of item response theory often require linking to achieve a common scale for item parameter estimates obtained from different groups. This article used a simulation to examine the relative performance of four different item response theory (IRT) linking procedures in a random groups equating design: concurrent calibration with multiple groups, separate calibration with the Stocking-Lord method, separate calibration with the Haebara method, and proficiency transformation. The simulation conditions used in this article included three sampling designs, two levels of sample size, and two levels of the number of items. In general, the separate calibration procedures performed better than the concurrent calibration and proficiency transformation procedures, even though some inconsistent results were observed across different simulation conditions. Some advantages and disadvantages of the linking procedures are discussed.  相似文献   

7.
A polytomous item is one for which the responses are scored according to three or more categories. Given the increasing use of polytomous items in assessment practices, item response theory (IRT) models specialized for polytomous items are becoming increasingly common. The purpose of this ITEMS module is to provide an accessible overview of polytomous IRT models. The module presents commonly encountered polytomous IRT models, describes their properties, and contrasts their defining principles and assumptions. After completing this module, the reader should have a sound understating of what a polytomous IRT model is, the manner in which the equations of the models are generated from the model's underlying step functions, how widely used polytomous IRT models differ with respect to their definitional properties, and how to interpret the parameters of polytomous IRT models.  相似文献   

8.
Preventing items in adaptive testing from being over- or underexposed is one of the main problems in computerized adaptive testing. Though the problem of overexposed items can be solved using a probabilistic item-exposure control method, such methods are unable to deal with the problem of underexposed items. Using a system of rotating item pools, on the other hand, is a method that potentially solves both problems. In this method, a master pool is divided into (possibly overlapping) smaller item pools, which are required to have similar distributions of content and statistical attributes. These pools are rotated among the testing sites to realize desirable exposure rates for the items. A test assembly model, motivated by Gulliksen's matched random subtests method, was explored to help solve the problem of dividing a master pool into a set of smaller pools. Different methods to solve the model are proposed. An item pool from the Law School Admission Test was used to evaluate the performances of computerized adaptive tests from systems of rotating item pools constructed using these methods.  相似文献   

9.
ABSTRACT

In applications of item response theory (IRT), fixed parameter calibration (FPC) has been used to estimate the item parameters of a new test form on the existing ability scale of an item pool. The present paper presents an application of FPC to multiple examinee groups test data that are linked to the item pool via anchor items, and investigates the performance of FPC relative to an alternative approach, namely independent 0–1 calibration and scale linking. Two designs for linking to the pool are proposed that involve multiple groups and test forms, for which multiple-group FPC can be effectively used. A real-data study shows that the multiple-group FPC method performs similarly to the alternative method in estimating ability distributions and new item parameters on the scale of the item pool. In addition, a simulation study shows that the multiple-group FPC method performs nearly equally to or better than the alternative method in recovering the underlying ability distributions and the new item parameters.  相似文献   

10.
11.
Test assembly is the process of selecting items from an item pool to form one or more new test forms. Often new test forms are constructed to be parallel with an existing (or an ideal) test. Within the context of item response theory, the test information function (TIF) or the test characteristic curve (TCC) are commonly used as statistical targets to obtain this parallelism. In a recent study, Ali and van Rijn proposed combining the TIF and TCC as statistical targets, rather than using only a single statistical target. In this article, we propose two new methods using this combined approach, and compare these methods with single statistical targets for the assembly of mixed‐format tests. In addition, we introduce new criteria to evaluate the parallelism of multiple forms. The results show that single statistical targets can be problematic, while the combined targets perform better, especially in situations with increasing numbers of polytomous items. Implications of using the combined target are discussed.  相似文献   

12.
Computerized adaptive testing (CAT) has gained deserved popularity in the administration of educational and professional assessments, but continues to face test security challenges. To ensure sustained quality assurance and testing integrity, it is imperative to establish and maintain multiple stable item pools that are consistent in terms of psychometric characteristics and content specifications. This study introduces the Honeycomb Pool Assembly (HPA) framework, an innovative solution for the construction of multiple parallel item pools for CAT that maximizes item utilization in the item bank. The HPA framework comprises two stages—cell assembly and pool assembly—and uses a mixed integer programming modeling approach. An empirical study demonstrated HPA's effectiveness in creating a large number of parallel pools using a real-world high-stakes CAT assessment item bank. The HPA framework offers several advantages, including (a) simultaneous creation of multiple parallel pools, (b) simplification of item pool maintenance, and (c) flexibility in establishing statistical and operational constraints. Moreover, it can help testing organizations efficiently manage and monitor the health of their item banks. Thus, the HPA framework is expected to be a valuable tool for testing professionals and organizations to address test security challenges and maintain the integrity of high-stakes CAT assessments.  相似文献   

13.
Biased test items were intentionally imbedded within a set of test items, and the resulting instrument was administered to large samples of blacks and whites. Three popular item bias detection procedures were then applied to the data: (1) the three-parameter item characteristic curve procedure, (2) the chi-square method, and (3) the transformed item difficulty approach. The three-parameter item characteristic curve procedure proved most effective at detecting the intentionally biased test items; and the chi-square method was viewed as the best alternative. The transformed item difficulty approach has certain limitations yet represents a practical alternative if sample size, lack of computer facilities, or the like preclude the use of the other two procedures.  相似文献   

14.
Large-scale assessments often use a computer adaptive test (CAT) for selection of items and for scoring respondents. Such tests often assume a parametric form for the relationship between item responses and the underlying construct. Although semi- and nonparametric response functions could be used, there is scant research on their performance in a CAT. In this work, we compare parametric response functions versus those estimated using kernel smoothing and a logistic function of a monotonic polynomial. Monotonic polynomial items can be used with traditional CAT item selection algorithms that use analytical derivatives. We compared these approaches in CAT simulations with a variety of item selection algorithms. Our simulations also varied the features of the calibration and item pool: sample size, the presence of missing data, and the percentage of nonstandard items. In general, the results support the use of semi- and nonparametric item response functions in a CAT.  相似文献   

15.
In this article, procedures are described for estimating single-administration classification consistency and accuracy indices for complex assessments using item response theory (IRT). This IRT approach was applied to real test data comprising dichotomous and polytomous items. Several different IRT model combinations were considered. Comparisons were also made between the IRT approach and two non-IRT approaches including the Livingston-Lewis and compound multinomial procedures. Results for various IRT model combinations were not substantially different. The estimated classification consistency and accuracy indices for the non-IRT procedures were almost always lower than those for the IRT procedures.  相似文献   

16.
A rapidly expanding arena for item response theory (IRT) is in attitudinal and health‐outcomes survey applications, often with polytomous items. In particular, there is interest in computer adaptive testing (CAT). Meeting model assumptions is necessary to realize the benefits of IRT in this setting, however. Although initial investigations of local item dependence have been studied both for polytomous items in fixed‐form settings and for dichotomous items in CAT settings, there have been no publications applying local item dependence detection methodology to polytomous items in CAT despite its central importance to these applications. The current research uses a simulation study to investigate the extension of widely used pairwise statistics, Yen's Q3 Statistic and Pearson's Statistic X2, in this context. The simulation design and results are contextualized throughout with a real item bank of this type from the Patient‐Reported Outcomes Measurement Information System (PROMIS).  相似文献   

17.
Item parameter drift (IPD) occurs when item parameter values change from their original value over time. IPD may pose a serious threat to the fairness and validity of test score interpretations, especially when the goal of the assessment is to measure growth or improvement. In this study, we examined the effect of multidirectional IPD (i.e., some items become harder while other items become easier) on the linking procedure and rescaled proficiency estimates. The impact of different combinations of linking items with various multidirectional IPD on the test equating procedure was investigated for three scaling methods (mean-mean, mean-sigma, and TCC method) via a series of simulation studies. It was observed that multidirectional IPD had a substantive effect on examinees' scores and achievement level classifications under some of the studied conditions. Choice of linking method had a direct effect on the results, as did the pattern of IPD.  相似文献   

18.
The alignment of test items to content standards is critical to the validity of decisions made from standards‐based tests. Generally, alignment is determined based on judgments made by a panel of content experts with either ratings averaged or via a consensus reached through discussion. When the pool of items to be reviewed is large, or the content‐matter experts are broadly distributed geographically, panel methods present significant challenges. This article illustrates the use of an online methodology for gauging item alignment that does not require that raters convene in person, reduces the overall cost of the study, increases time flexibility, and offers an efficient means for reviewing large item banks. Latent trait methods are applied to the data to control for between‐rater severity, evaluate intrarater consistency, and provide item‐level diagnostic statistics. Use of this methodology is illustrated with a large pool (1,345) of interim‐formative mathematics test items. Implications for the field and limitations of this approach are discussed.  相似文献   

19.
《教育实用测度》2013,26(4):297-312
Certain potential benefits of using item response theory in test construction are discussed and evaluated using the experience and evidence accumulated during 9 years of using a three-parameter model in the construction of major achievement batteries. We also discuss several cautions and limitations in realizing these benefits as well as issues in need of further research. The potential benefits considered are those of getting "sample-free" item calibrations and "item-free" person measurement, automatically equating various tests, decreasing the standard errors of scores without increasing the number of items used by using item pattern scoring, assessing item bias (or differential item functioning) independently of difficulty in a manner consistent with item selection, being able to determine just how adequate a tryout pool of items may be, setting up computer-generated "ideal" tests drawn from pools as targets for test developers, and controlling the standard error of a selected test at any desired set of score levels.  相似文献   

20.
In the presence of test speededness, the parameter estimates of item response theory models can be poorly estimated due to conditional dependencies among items, particularly for end‐of‐test items (i.e., speeded items). This article conducted a systematic comparison of five‐item calibration procedures—a two‐parameter logistic (2PL) model, a one‐dimensional mixture model, a two‐step strategy (a combination of the one‐dimensional mixture and the 2PL), a two‐dimensional mixture model, and a hybrid model‐–by examining how sample size, percentage of speeded examinees, percentage of missing responses, and way of scoring missing responses (incorrect vs. omitted) affect the item parameter estimation in speeded tests. For nonspeeded items, all five procedures showed similar results in recovering item parameters. For speeded items, the one‐dimensional mixture model, the two‐step strategy, and the two‐dimensional mixture model provided largely similar results and performed better than the 2PL model and the hybrid model in calibrating slope parameters. However, those three procedures performed similarly to the hybrid model in estimating intercept parameters. As expected, the 2PL model did not appear to be as accurate as the other models in recovering item parameters, especially when there were large numbers of examinees showing speededness and a high percentage of missing responses with incorrect scoring. Real data analysis further described the similarities and differences between the five procedures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号