首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this research project, we investigated two beginning secondary science teachers' efforts to learn to teach science in ways that build from and celebrate the ethnic, gender, linguistic, and academic diversity of their students. To do so, we followed Troy and Brian from their preservice teacher education experiences through their first year of teaching 8th grade physical science at local junior high schools. We also conducted a follow‐up observation and interview with each participant after he had moved past the beginning stage of survival in the teaching profession—once in his fourth year of public school science teaching. Through qualitative analysis of interviews, classroom observations, and teachers' written work, we identified patterns and explored commonalities and differences in Troy and Brian's views and practices tied to equity over time. In particular, we examined successes and challenges they encountered in learning to teach science for all (a) from their students, (b) from inquiry into practice, and (c) from participation in professional communities. In our implications, we suggest ways teacher educators and induction professionals can better support beginning teachers in learning to teach science to all students. In particular, we highlight the central roles both individual colleagues and collective school cultures play in aiding or impeding beginning teachers' efforts to learn from students, from practice, and from professional communities. © 2006 Wiley Periodicals, Inc. J Res Sci Teach 44: 586–612, 2007.  相似文献   

2.
This study was designed to investigate the relationship between students' views of the nature of scientific knowledge and their own learning of physics, and the evolution of this relationship over time. Twenty-three students enrolled in a physics course that emphasised laboratory work and discussions about the nature of science. Over a 15-month period, an extensive data base was established including student essays and interviews regarding their views of the nature of science and teaching and learning of physics. As part of an extensive data generation, students read a book on the epistemology of physics, wrote reflective essays, and subsequently discussed the epistemology of physics in class. Two intensive case studies are used to illustrate our understanding of students' views over time. Changes in students' views concerning the nature of scientific knowledge and of the science teaching and learning process, which were not always complementary, are described with the aid of a model. The findings of this research have direct relevance to the planning and implementation of science courses in which the development of understandings of the nature of science is an objective.  相似文献   

3.
In this article, we authors and feminist science and teacher educators share assignments we developed and used in our undergraduate and graduate teacher education classes. We designed these varied assignments to help students feel comfortable with science, to begin to understand and critique the many ways science has been narrowly and powerfully shaped and has marginalized significant groups of individuals, and to begin to deconstruct scientific knowledge and construct alternative views of science and science education that are gender and culture sensitive. We also challenged them to use what they were learning to develop pedagogical strategies that would be inviting to their own students. The focus of the article is our students' reactions to these assignments and how these reactions—both inviting and resisting—informed us about their notions of science, of teaching, of themselves as learners, and of the social context in which they would teach. © 1998 John Wiley & Sons, Inc. J Res Sci Teach 35: 897–918, 1998.  相似文献   

4.
The purpose of this paper is to examine how instruction in scientific writing in a university oceanography course communicated epistemological positions of this discipline. Drawing from sociological and anthropological studies of scientific communities, this study uses an ethnographic perspective to explore how teachers and students came to define particular views of disciplinary knowledge through the everyday practices associated with teaching and learning oceanography. Writing in a scientific genre was supported by interactive CD‐ROM which allowed students to access data representations from geological databases. In our analysis of the spoken and written discourse of the members of this course, we identified epistemological issues such as uses of evidence, role of expertise, relevance of point of view, and limits to the authority of disciplinary inquiry. Implications for college science teaching are drawn. © 2000 John Wiley & Sons, Inc. J Res Sci Teach 37: 691–718, 2000  相似文献   

5.
Arguments for teaching about the nature of science have been made for several decades. The most recent science education policy documents continue to assert the need for students to understand the nature of science. However, little research actually explores how students develop these understandings in the context of a specific course. We examine the growth in students' understanding about the nature of astronomy in a one‐semester college course. In addition to student work collected for 340 students in the course, we also interviewed focus students three times during the course. In this article we briefly describe class data and discuss in detail how five students developed their ideas throughout the course. In particular, we show the ways in which students respond to instruction with respect to the extent to which they (a) demand and examine evidence used for justifying claims, (b) integrate scientific and religious views, and (c) distinguish between scientific and nonscientific theories. © 2000 John Wiley & Sons, Inc. J Res Sci Teach 37: 340–362, 2000.  相似文献   

6.
In Portugal, the number of students in higher education increased from 80,000 in 1975 to 381,000 in 2000 (a change from 11% to 53% in the age group 18–22), meaning a major change in the diversity of student population with consequences well known and studied in other countries. The teaching of chemistry at the University of Aveiro, for the first‐year students of science and engineering, has been subjected to continuous attention to implement quality and student‐centred approaches. The work devoted to excellence and deep learning by several authors has been carefully followed and considered. This communication reports research work on chemistry teaching, associated with those developments for first‐year students. The work included the design of strategies and the adoption of teaching and learning activities exploring ways to stimulate active learning by improving the quality of classroom interactions. In addition to regular lectures, large classes' teaching based on student‐generated questions was explored. In order to improve students' motivation and stimulate their curiosity, conference‐lectures were adopted to deal with selected topics of wide scientific, technological and social interest. Quantitative analysis and discussion of selected case studies, together with the organization of laboratory classes based on selected enquiry‐based experiments, planned and executed by students, stimulated deep learning processes. A sample of 32 students was followed in the academic year of 2000/01 and the results obtained are here discussed in comparison with those of a sample of 100 students followed in 2001/02. Particular attention was paid to the quality of classroom interactions, the use of questions by students and their views about the course design.  相似文献   

7.
In this study, we examined the discursive and social practices of a teacher educator (the first author) and her eight beginning science teachers in a course on the nature of science and issues of equity and diversity. We focused our investigation on beginning science teachers' views of science and science teaching, as well as the grounds they offered for their views. We organized our discussion of the nature of science, teacher learning, and grounds for views along three dimensions: personal, social, and political. We found that beginning teachers routinely drew from only one of these three dimensions to support their views of the nature of science and ways to represent science to all students. In our implications, we recommend that teacher educators encourage teacher learners to examine personal, social, and political grounds carefully and critically in the process of constructing or revising their views. We argue that attention to these three dimensions of grounds for views will assist beginning teachers in adopting nature of science positions that are broad and complex, that more clearly reflect the goals of equity and excellence, and thus, that hold greater promise for achieving a science education inclusive of all students. © 2003 Wiley Periodicals, Inc. J Res Sci Teach 40: 53–76, 2003  相似文献   

8.
We investigated secondary science and mathematics teachers engaged in a two-and-a-half-year professional development effort focused on equity. We examined how teachers conducting research on their own instructional practices—a central learning strategy of the professional development project—informed and/or constrained their views related to three strands of equity: teachers and teaching, students and learning, and students’ families and communities. Data collected included recordings of professional development seminars and school-site meetings, three sets of individual interviews with teacher researchers, and drafts and final products of the classroom research teachers conducted. From our qualitative analyses of data, we found that most teachers addressed at least two of the three equity strands in researching their own practice. We also found that most transformed their understandings of teachers and students as a result of their teacher research process. However, teachers’ views of families and communities changed in less substantive ways. We close with recommendations for other researchers and professional developers intent on supporting science and mathematics teachers in using teacher research to work toward equity.  相似文献   

9.
This study explores five minority preservice teachers’ conceptions of teaching science and identifies the sources of their strategies for helping students learn science. Perspectives from the literature on conceptions of teaching science and on the role constructs used to describe and distinguish minority preservice teachers from their mainstream White peers served as the framework to identify minority preservice teachers’ instructional ideas, meanings, and actions for teaching science. Data included drawings, narratives, observations and self-review reports of microteaching, and interviews. A thematic analysis of data revealed that the minority preservice teachers’ conceptions of teaching science were a specific set of beliefs-driven instructional ideas about how science content is linked to home experiences, students’ ideas, hands-on activities, about how science teaching must include group work and not be based solely on textbooks, and about how learning science involves the concept of all students can learn science, and acknowledging and respecting students’ ideas about science. Implications for teacher educators include the need to establish supportive environments within methods courses for minority preservice teachers to express their K-12 experiences and acknowledge and examine how these experiences shape their conceptions of teaching science, and to recognize that minority preservice teachers’ conceptions of teaching science reveal the multiple ways through which they see and envision science instruction.  相似文献   

10.
The knowledge of historical facts can help teachers and students to correctly appreciate a variety of scientific theories. It is important to be aware of the evolution of the basic concepts, particularly the ones our students find very abstract and therefore difficult to understand. Historical knowledge of chemical concepts will allow us to understand their difficulties and make them easier to teach successfully. In this paper we answer the following research questions: what was the historic and sociologic context in which chemical equivalent, mole and its magnitude amount of substance were introduced to science? How the lack of historic knowledge in science teaching contributes to the presence of distorted views of science and hampers meaningful learning?  相似文献   

11.
In science education, students sometimes create and engage in spontaneous science-oriented play where ideas about science and scientists are put to use. However, in previous research, little attention has been given to the role of informal spontaneous play in school science classrooms. We argue that, in order to enhance our understanding of learning processes in school science practices, research that investigates play as an aspect of everyday culture is needed. The aim of this paper is to explore students’ informal play as part of activity in lower secondary school science. The empirical study was conducted in two Swedish compulsory schools in grade 6. Data were collected throughout a teaching unit called ‘The Chemistry of Food’ during a 10-week period using video and audiotape recordings of classroom work. Our analyses show that the play students engage in involves the transformations of given tasks. We find that students’ spontaneous collective play offers opportunities for them to explore the epistemic values and norms of science and different ways of positioning in relation to science. Our findings contribute to the understanding of how learning in the school science classroom is socially and culturally–historically embedded and how individual students’ engagement through play may transform and transcend existing classroom practices.  相似文献   

12.
Recent curriculum design projects have attempted to engage students in authentic science learning experiences in which students engage in inquiry‐based research projects about questions of interest to them. Such a pedagogical and curricular approach seems an ideal space in which to construct what Lee and Fradd referred to as instructional congruence. It is, however, also a space in which the everyday language and literacy practices of young people intersect with the learning of scientific and classroom practices, thus suggesting that project‐based pedagogy has the potential for conflict or confusion. In this article, we explore the discursive demands of project‐based pedagogy for seventh‐grade students from non‐mainstream backgrounds as they enact established project curricula. We document competing Discourses in one project‐based classroom and illustrate how those Discourses conflict with one another through the various texts and forms of representation used in the classroom and curriculum. Possibilities are offered for reconstructing this classroom practice to build congruent third spaces in which the different Discourses and knowledges of the discipline, classroom, and students' lives are brought together to enhance science learning and scientific literacy. © 2001 John Wiley & Sons, Inc. J Res Sci Teach 38: 469–498, 2001  相似文献   

13.
In this study, we produced a documentary which portrays scientists at work and critically evaluated the use of this film as a teaching tool to help students develop an understanding of the nature of science. The documentary, “Life as a Scientist: People in Love with Caenorhabditis elegans, a Soil Nematode” encompasses the entire process of a scientific investigation by exploring the everyday life of a particular group of scientists. We explored the effectiveness of this documentary in teaching the nature of science by examining the epistemological views of college students toward science before and after viewing. In addition, we collected written responses from the students where they described which aspect of the nature of science they learned from the documentary. The scores of epistemological views toward science increased between the pretest and the posttest (p < 0.01) with the most significant increase being in their views of the role of social negotiation. In the written responses, approximately half of the students suggested that they had learned more about the role which cooperation and collaboration play in the development of scientific knowledge by watching the documentary. The documentary overall provides a valuable instructional context so that students are able to discuss and reflect on various aspects of nature of science within authentic scientific research.  相似文献   

14.
The twenty‐first century is characterized by multiple, frequent and remarkable scientific advancements, which have a major effect on the decisions that govern everyday life. It is therefore vital to give proper comprehensive scientific education to the population and provide it with the right tools for decision‐making. This in turn requires that we foster a positive attitude among students towards science studies and encourage them to choose sciences as their major subjects. The following study examines 10th‐grade high school students in an attempt to understand and document the influential factors underlying their attitudes towards science studies. The study is conducted through a qualitative research methodology, gathering data based on interviews. This methodology exposes the students’ feelings, views and beliefs, and explores the characteristics of the factors influencing students’ attitudes. Of these factors, we found the most significant for high school students to be interpersonal interaction between teacher and student, the relevance and authenticity of the topics being studied, and the diversity of the teaching methods. We therefore suggest that these three elements should be given particular emphasis by teachers and teacher educators.  相似文献   

15.
Our research project was guided by the assumption that students who learn to understand phenomena in everyday terms prior to being taught scientific language will develop improved understanding of new concepts. We used web‐based software to teach students using a “content‐first” approach that allowed students to transition from everyday understanding of phenomena to the use of scientific language. This study involved 49 minority students who were randomly assigned into two groups for analysis: a treatment group (taught with everyday language prior to using scientific language) and a control group (taught with scientific language). Using a pre–post‐test control group design, we assessed students' conceptual and linguistic understanding of photosynthesis. The results of this study indicated that students taught with the “content‐first” approach developed significantly improved understanding when compared to students taught in traditional ways. © 2008 Wiley Periodicals, Inc. J Res Sci Teach 45: 529–553, 2008  相似文献   

16.
In line with a current global trend, junior secondary science education in Bangladesh aims to provide science education for all students to enable them to use their science learning in everyday life. This aim is consistent with the call for scientific literacy, which argues for engaging students with science in everyday life. This paper illustrates Bangladeshi science teachers’ perspectives of scientific literacy along with their views on teaching practices. Participating teachers held a range of perspectives of scientific literacy, including some naive perspectives. The paper also reports that whilst teachers’ verbalised practices in relation to their emphasis on engaging students with science in everyday life follows the emphases as required in teaching for promoting scientific literacy, their assessment practices may not be useful to promote it. The discussion explores the meaning of these findings and provides implications for school science educational practice in Bangladesh.  相似文献   

17.
While there is a growing literature focused on doctoral preparation for teaching about science teaching, rarely have recommendations extended to preparation for teaching science content to teachers. We three doctoral students employ self-study as a research methodology to investigate our developing pedagogical content knowledge for teaching science to teachers during a mentored internship in an elementary teacher professional development program. With our mentor, we examine critical incidents in the experience that supported new insights about teaching teachers and about ways in which beginning teacher educators need to develop their existing pedagogical content knowledge for teaching science to students in order to teach science effectively to teachers. We emphasize ways in which doctoral internships can support this learning and how our respective cultures shaped our interactions with and perceptions of teachers as learners.  相似文献   

18.
A reader of Traianou and Hammersley’s article (in this issue), which discusses at some length the work we undertook in the Evidence‐based Practice in Science Education (EPSE) Research Network, might attribute to us views that are rather different from those which we in fact hold, and which we have sought to present in our own accounts of this work. We highlight several points on which their interpretation of our work and views differs markedly from ours. The aim of the EPSE Network was to explore the practical implications of ‘evidence‐based practice’ in the context of a mainstream curriculum subject such as science, not to advocate any particular interpretation of that term. We would encourage readers interested in the relationship between research and practice in the teaching of specific subjects to base their view of our work, and the perspectives underpinning it, on our own account.  相似文献   

19.
In this article, we present two studies that helped us understand the kinds of support that students need to learn science successfully from design activities. Both were enacted in the context of an approach to learning science from design called learning by design (LBD). In our first study, we designed and integrated a paper‐and‐pencil scaffolding tool, the design diary, into an LBD unit to support students' design‐related activities. We learned two important lessons from the first study. First, we refined our understanding of the processes involved in designing and the ways we might present those processes to students. Second, and more important, we observed that in the dynamic, complex environment of the classroom, not all of the scaffolding could be provided with any one tool or agent. We found that students need multiple forms of support and multiple learning opportunities to learn science successfully from design activities. In our next study, we provided additional support through an organized system of tools and agents. Our analysis of data from the second study leads us to believe that supporting multiple students in a classroom requires us to rethink the notion of scaffolding as it applied to groups of learners in a classroom. We put forth the notion of distributed scaffolding as an approach to supporting hands‐on inquiry learning in a classroom. © 2005 Wiley Periodicals, Inc. J Res Sci Teach 42: 185–217, 2005  相似文献   

20.
Science teachers and educators seek to promote equity and inclusion within their classrooms. Yet, many do not examine how their roles could reproduce oppression that continues to exclude certain groups of students. Centering on how oppression interacts with science teaching and learning, this naturalistic study observed Ms. William and her implementation of two STEM units that integrate science and engineering, to understand power, race, and privilege dynamics in her middle school STEM classrooms. Specifically, we focused on understanding oppression at the interpersonal and internalized level in Ms. William's class. We collected and analyzed video recorded lessons from two different classrooms, two STEM curricula Ms. William had co-developed, and conducted semi-structured interviews after she taught her two STEM units. We identified themes of oppression perpetuated in the classroom by employing thematic analysis, which when guided by our theoretical framework enabled us to illuminate the complex relationship between science teaching and maintaining whiteness as the dominant discourse in science learning. Our findings suggest that an active and critical role from science teachers and educators are required; we must reflect deeply on our science curriculum and teaching strategies and identify practices that remains to be oppressive if promoting equity and inclusion is at the forefront of our science teaching.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号