首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 251 毫秒
1.
同学们都熟知,在△ABC中,A、B、C为三个内角,a,b,c为三边,R为△ABC的外接圆半径,则有正弦定理 a/sinA=b/sinB=c/sinC=2R 正弦定理它是揭示三角形的边、角及外接圆半径之间数量关系的一个重要定理.灵活运用正弦定理解几何题,往往可以避免因添设辅助线所带来的困难,而且在许多情况下,能使证明思路清晰,解法简捷明快.  相似文献   

2.
在中学数学里,正弦定理和余弦定理是刻画三角形边、角关系的两个最常用、最重要的定理。斜三角形的射影定理也是沟通边、角关系的重要定理。有时解题,应用射影定理,比较正弦定理和余弦定理,更加方便,本文将介绍斜三角形射影定理的若干应用。射影定理三角形的任意一边等于其余两边在这边上的射影之和。即,斜三角形的射影定理可表示成: a=bcosC+ccosB.(1) b=acos C+ccosA.(2) c=acos B+b cosA.(3)  相似文献   

3.
勾股定理是欧几里得几何中的重要定理之一,国外称之为毕达哥拉斯定理.它主要揭示直角三角形三边之间的度量关系,其主要内容是:在△ABC中,若∠C=90°,则a2+b2=c2;反之,若a2+b2=c2,则∠C=90°.  相似文献   

4.
定理 设△ABC三边为a,b,c,a+b+c=2p,外接圆半径为R.则由三个旁心构成的三角形的面积S0=2pR.  相似文献   

5.
人教版必修⑤练习中要求证明射影定理: 在△AABC中,A、B、C对应的边分别为a,b,c,则 a=bcosC+ccosB, b=ccosA+acosC, c=acosB+bcosA.  相似文献   

6.
把三角形中的边、角和面积统一起来的三个重要定理:正弦定理、余弦定理和面积定理,不仅在处理与三角形有关的问题中起着重要的作用,而且在证明涉及到边、角和面积的不等式中也有广泛的应用,其中用正弦定理:a=2RsinA,b=2RsinB,c=2RsinC可将不等式中的边转化为角,从而不等式可转化为三角不等式而得以证明;用余弦定理可将不等式中出现的边的平方,例如c~2用a~2+b~2-2abcosC代换,原不等式变量减少,此时不等  相似文献   

7.
5.9正弦定理、余弦定理教材细解1.正弦定理(1)正弦定理:在△ABC中,a、b、c分别为角A、B、C的对边,R为△ABC的外接圆的半径,则有asinA=sibnB=sincC=2R.(2)正弦定理的证明:①向量法:先选定与其中  相似文献   

8.
正弦定理和余弦定理是解斜三角和判定三角类型的重要工具,其主要作用是将已知条件中的边、角关系转化为角的关系或边的关系.在近年高考中主要有以下五大命题热点:一、求解斜三角形中的基本元素是指已知两边一角(或二角一边或三边),求其他三个元素问题.【例1】在△ABC中,a、b、c分别是∠A、∠B、∠C所对的边.若∠A=105°,∠B=45,b=22,则c=.解:由正弦定理,得sinbB=sincC,即si2n425°=sinc30°,解得c=2.【例2】在△ABC中,sinA∶sinB∶sinC=2∶3∶4,则∠ABC=(结果用反三角函数值表示).解:由已知及正弦定理,可得a∶b∶c=2∶3∶4,则a=2k,b…  相似文献   

9.
韦达定理是反映一元二次方程根与系数关系的重要定理,纵观近年各省、市的中考(竞赛)试题可以发现,关于涉及此定理的题目屡见不鲜,且条件隐蔽,在证(解)题时,学生往往因未看出题目中所隐含的韦达定理的条件而导致思路闭塞,或解法呆板,过程繁琐冗长。下面举例谈谈韦达定理在解题中的应用,供大家参考。 一、直接应用韦达定理 若已知条件或待证结论中含有a b和a·b形式的式子,可考虑直接应用韦达定理。 例1 在△ABC中,a、b、c分别是∠A、∠B、∠C的对边,D是AB边上一点,且BC=DC,设AD=d.求证: (1)c d=2bcosA; (2)c·d=b~2-a~2.  相似文献   

10.
定理 已知△ABC三边分别为BC=a,CA=b,AB=c,分别以a、b、c为轴旋转△ABC,所得几何体体积依次为Va、Vb、Vc、则Va:Vb:Vc=bc:ca:ab.这是在课堂上师生共同发现的一个定理.略证如下:  相似文献   

11.
引例(2011年全国卷Ⅱ理科第17题)设△ABC的内角A,B,C的对边分别为a,b,c.已知A-C=90°,a+c=槡2b,求C的值.分析一从a+c=槡2b突破,利用正弦定理把边的关系转化为角的关系,即sinA+sinC=槡2sinB①,然后再结合A-C=90°,  相似文献   

12.
设△ABC的三边为a、b、c,对角分别是A、B、C,则有a/sinA=B/sinB=c/sinC=2R,其中R为△ABC的外接圆半径,这就是正弦定理,运用正弦定理,证平面几何题,常具有思路清楚,过程简单,少作或不作辅助线等优点,下面举例说明,  相似文献   

13.
第 3届国际中学生数学竞赛有一个几何题是这样叙述的 :设 a,b,c为△ ABC的三边之长 ,S为面积 .求证 :a2 b2 c2≥ 43 S,当且仅当 a =b=c取“=”.这就是著名的 Weisenbock不等式 .本文运用等周定理和幂平均不等式来推广Weisenbock不等式 .命题 1 设△ ABC三边之长分别为 a,b  相似文献   

14.
<正>利用勾股定理的逆定理,可以根据三角形的三边判别某三角形是否为直角三角形.在使用该定理时,如果把已知条件适当变形,可以化复杂为简单.一、两边同时平方例1若△ABC的三边a、b、c满足a+b=10,ab=18,c=8,试判别△ABC的形状.析解∵a+b=10,∴(a+b)2=100,∴a2+2ab+b2=100.把ab=18代入,得  相似文献   

15.
斜三角形射影定理为(a,b,c为AABC三边): a=bcosC ccosB.有如下应用. 例1.△ABC中,若acos~2(C/2)  相似文献   

16.
射影定理:在△ABC中,若角A、B、C所对的边分别是a、b、c则: a=bcosC ccosB b=acosC ccosA c=acosB bcosA 在新教材中,余弦定理是用向量方法推出的,人教社蔡上鹤先生在文[1]中是把射影定理作为余弦定理的推论给出的,下面笔者直接给出它的向量证法.  相似文献   

17.
众所周知 ,在△ ABC中 ,A,B,C为三个内角 ,a,b,c为对应三边 ,R为△ABC的外接圆半径 ,则有正弦定理  asin A=bsin B=csin C=2 R.正弦定理是揭示三角形的边、角及外接圆半径之间数量关系的一个重要定理 .灵活运用正弦定理解几何题 ,往往可以避免因添设辅助线所带来的困难 ,而且在许多情况下 ,能使证明思路自然 ,解法简捷明快 .使用正弦定理 ,应注意它的变形 :(1) ab=sin Asin B,bc=sin Bsin C,ca=sin Csin A.这表明 ,通过正弦定理 ,可实现边长之比与角的正弦之比的相互转化 ,从而将边的关系转化为角的关系用三角知识来解决 ,或者是将…  相似文献   

18.
正弦定理:a/sinA=b/sinB=c/sinC=2R,它是解三角形问题的有力工具之一,利用其变式(1)a=2RsinA,b=2RsinB,c=2RsinC;(2)sinA=a/2R,sinB=b/2R,sinC=c/2R,可以将三角形的边角关系互化,进而实现边(或角)的统一,然后利用这种“统一边(或角)”的思想来解三角形,现举例说明。  相似文献   

19.
我们在初中已学过正弦定理和余弦定理:在△ABC中,角A、B、C所对的边分别为a、b、c,其外接圆半径为R,则有 a/sinA=b/sinB=c/sinC=2R及 a~2=b~2+c~2-2bccosA. 应用正弦定理把余弦定理中的边都化为角,则有: sin~2A=sin~2B+sin~2C-2sinBsinCcosA. 可以证明当A+B+C=kπ,k为奇数时此式都成立。我们不妨把上式称为正——余弦定理。下面举例说明这个定理的应用。例1 求sin~210°+cos~240°+sin10°cos40°的值。  相似文献   

20.
用勾股定理解有关问题时要注意什么呢? 一、要注意定理的正确运用例1 在△ABC中,∠A=90°a、b、c分别是∠A、∠B、∠C的对边,a=4,b=3.求c.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号