首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Inspiratory muscle fatigue may occur in as little as 6 min during high-intensity spontaneously breathing exercise. The aims of this study were to determine whether inspiratory muscle fatigue occurs during swimming exercise and whether inspiratory muscle strength differs between the supine and standing body positions. Seven competitive swimmers were recruited to perform a single 200 m front-crawl swim, corresponding to 90-95% of race pace. Inspiratory muscle strength was measured at residual volume using a hand-held mouth pressure meter that measured maximal inspiratory pressure in the upright and supine positions. At baseline, maximal inspiratory pressure in the supine position was significantly lower than maximal inspiratory pressure in the upright position (112±20.4 and 133±16.7 cmH2O, respectively; P?0.01). Post-exercise maximal inspiratory pressure in the supine position (80±15.7 cmH2O) was significantly lower than baseline maximal inspiratory pressure in the supine position (P?0.01). The results indicate that a single 200 m front-crawl swim corresponding to 90-95% of race pace was sufficient to induce inspiratory muscle fatigue in less than 2.7 min. Furthermore, although diaphragm muscle length is optimized when supine, our results indicate that the force output of the diaphragm and inspiratory accessory muscles is greater when upright than when supine.  相似文献   

2.
Respiratory muscle fatigue has been reported following short bouts of high-intensity exercise, and prolonged, moderate-intensity exercise, as evidenced by decrements in inspiratory and expiratory mouth pressures. However, links to functionally relevant outcomes such as breathing effort have been lacking. The present study examined dyspnoea and leg fatigue during a treadmill marathon in nine experienced runners. Maximal inspiratory and expiratory pressure, peak inspiratory and expiratory flow, forced vital capacity, and forced expiratory volume in one second were assessed before, immediately after, and four and 24 hours after a marathon. During the run, leg effort was rated higher than respiratory effort from 18 through 42 km (P < 0.05). Immediately after the marathon, there were significant decreases in maximal inspiratory pressure and peak inspiratory flow (from 118 +/- 20 cm H(2)O and 6.3 +/- 1.4 litres x s(-1) to 100 +/- 22 cm H(2)O and 4.9 +/- 1.5 litres x s(-1) respectively; P < 0.01), while expiratory function remained unchanged. Leg maximum voluntary contraction force was significantly lower post-marathon. Breathing effort correlated significantly with leg fatigue (r = 0.69), but not inspiratory muscle fatigue. Our results confirm that prolonged moderate-intensity exercise induces inspiratory muscle fatigue. Furthermore, they suggest that the relative intensity of inspiratory muscle work during exercise makes some contribution to leg fatigue.  相似文献   

3.
The effect of inspiratory muscle training for 10 min twice a day for 27.5 days was evaluated in 20 human subjects, of whom 10 formed a training group and 10 a sham training group. The maximal oxygen uptake (VO2 max), maximal ventilation, breathing frequency during maximal exercise and the distance run in 12 min on a track were determined in addition to resting peak expiratory flow, forced vital capacity (FVC) and forced expiratory volume in 1 s (FEV1), with alveolar oxygen tension (pAO2) during maximal exercise being calculated. Inspiratory muscle training increased maximal inspiratory pressure from 93 (range 38-118) to 110 (65-165) mmHg in the training group (P less than 0.0005), but did not affect VO2 max, ventilation during maximal exercise, peak expiratory flow, FEV1 or FVC. However, breathing frequency during maximal exercise decreased slightly from 56 (44-87) to 53 (38-84) breaths min-1 (P less than 0.05) in the training group only; but the calculated pAO2 did not increase from the pre-training value of 126 (116-132) mmHg. The maximal distance run during 12 min increased similarly in the training and sham training groups by 8% (3-12%) and 6% (2-12%), respectively (P less than 0.01). The results of this study show that inspiratory muscle training resulting in a 32% (0-85%) increase in maximal inspiratory pressure does not change FEV1, FVC, peak expiratory flow, VO2 max or work capacity.  相似文献   

4.
Abstract

Eight college swimmers were tested on a swimming ergometer to investigate the effects of body position on land and immersion in the water on the heart rate recovery after swimming exercise. The subjects swam at a predetermined work load for 5 min. and then assumed one of the four conditions for recovery (erect and supine on the deck, motionless and swimming in the water). Heart rates were recorded for the 3 min. of recovery. After the allowance for recovery, the subject was timed for a 200-yd. swim. No statistically significant differences were noted when comparing the recovery heart rates for the four conditions. The same was found true when comparing the 200-yd. swim times. It was noted that the swim was felt to be harder when recovery was completed in an erect or supine position than after light exercise in the water.  相似文献   

5.
We evaluated the effects of specific inspiratory muscle training on simulated time-trial performance in trained cyclists. Using a double-blind, placebo-controlled design, 16 male cyclists (VO2max = 64 +/- 2 ml x kg(-1) x min(-1); mean +/- s(x)) were assigned at random to either an experimental (pressure-threshold inspiratory muscle training) or sham-training control (placebo) group. Pulmonary function, maximum dynamic inspiratory muscle function and the physiological and perceptual responses to maximal incremental cycling were assessed. Simulated time-trial performance (20 and 40 km) was quantified as the time to complete pre-set amounts of work. Pulmonary function was unchanged after the intervention, but dynamic inspiratory muscle function improved in the inspiratory muscle training group (P < or = 0.05). After the intervention, the inspiratory muscle training group experienced a reduction in the perception of respiratory and peripheral effort (Borg CR10: 16 +/- 4% and 18 +/- 4% respectively; compared with placebo, P < or = 0.01) and completed the simulated 20 and 40 km time-trials faster than the placebo group [66 +/- 30 and 115 +/- 38 s (3.8 +/- 1.7% and 4.6 +/- 1.9%) faster respectively; P = 0.025 and 0.009]. These results support evidence that specific inspiratory muscle training attenuates the perceptual response to maximal incremental exercise. Furthermore, they provide evidence of performance enhancements in competitive cyclists after inspiratory muscle training.  相似文献   

6.
Abstract

Respiratory muscle fatigue has been reported following short bouts of high-intensity exercise, and prolonged, moderate-intensity exercise, as evidenced by decrements in inspiratory and expiratory mouth pressures. However, links to functionally relevant outcomes such as breathing effort have been lacking. The present study examined dyspnoea and leg fatigue during a treadmill marathon in nine experienced runners. Maximal inspiratory and expiratory pressure, peak inspiratory and expiratory flow, forced vital capacity, and forced expiratory volume in one second were assessed before, immediately after, and four and 24 hours after a marathon. During the run, leg effort was rated higher than respiratory effort from 18 through 42 km (P < 0.05). Immediately after the marathon, there were significant decreases in maximal inspiratory pressure and peak inspiratory flow (from 118 ± 20 cm H2O and 6.3 ± 1.4 litres · s?1 to 100 ± 22 cm H2O and 4.9 ± 1.5 litres · s?1 respectively; P < 0.01), while expiratory function remained unchanged. Leg maximum voluntary contraction force was significantly lower post-marathon. Breathing effort correlated significantly with leg fatigue (r = 0.69), but not inspiratory muscle fatigue. Our results confirm that prolonged moderate-intensity exercise induces inspiratory muscle fatigue. Furthermore, they suggest that the relative intensity of inspiratory muscle work during exercise makes some contribution to leg fatigue.  相似文献   

7.
A well-documented observation after eccentric exercise is a reduction in maximal voluntary force. However, little is known about the ability to maintain maximal isometric force or generate and maintain dynamic peak power. These aspects of muscle function were studied in seven participants (5 males, 2 females). Knee extensor isometric strength and rate of fatigue were assessed by a sustained 60 s maximal voluntary contraction at 80 degrees and 40 degrees knee flexion, corresponding to an optimal and a shortened muscle length, respectively. Dynamic peak power and rate of fatigue were assessed during a 30 s Wingate cycle test. Plasma creatine kinase was measured from a fingertip blood sample. These variables were measured before, 1 h after and 1, 2, 3 and 7 days after 100 repetitions of the eccentric phase of the barbell squat exercise (10 sets x 10 reps at 80% concentric one-repetition maximum). Eccentric exercise resulted in elevations in creatine kinase activity above baseline (274+/-109 U x l(-1); mean +/- s(x)) after 1 h (506+/-116 U x l(-1), P < 0.05) and 1 day (808+/-117 U x l(-1), P < 0.05). Isometric strength was reduced (P < 0.05) for 7 days (35% at 1 h, 5% at day 7) and the rate of fatigue was lower (P < 0.05) for 3 days at 80 degrees and for 1 day at 40 degrees. Wingate peak power was reduced to a lesser extent (P < 0.05) than isometric strength at 1 h (13%) and, although the time course of recovery was equal, the two variables differed in their pattern of recovery. Eccentrically exercised muscle was characterized by an inability to generate high force and power, but an improved ability to maintain force and power. Such functional outcomes are consistent with the proposition that type II fibres are selectively recruited or damaged during eccentric exercise.  相似文献   

8.
Purpose: Skeletal muscle damage occurs following high-intensity or unaccustomed exercise; however, it is difficult to monitor damage to the respiratory muscles, particularly in humans. The aim of this study was to use clinical measures to investigate the presence of skeletal muscle damage in the inspiratory muscles. Methods: Ten healthy subjects underwent 60 minutes of voluntary inspiratory threshold loading (ITL) at 70% of maximal inspiratory pressure. Maximal inspiratory and expiratory mouth pressures, delayed onset muscle soreness on a visual analogue scale and plasma creatine kinase were measured prior to ITL, and at repeated time points after ITL (4, 24 and 48 hours post-ITL). Results: Delayed onset muscle soreness was present in all subjects 24 hours following ITL (intensity = 22 ± 6 mm; significantly higher than baseline p = 0.02). Muscle soreness was reported primarily in the anterior neck region, and was correlated to the amount of work done by the inspiratory muscles during ITL (r = 0.72, p = 0.02). However, no significant change was observed in maximal inspiratory or expiratory pressures or creatine kinase. Conclusions: These findings suggest that an intense bout of ITL results in muscle soreness primarily in the accessory muscles of inspiration, however, may be insufficient to cause significant muscle damage in healthy adults.Key Words: delayed onset muscle soreness, respiratory muscles, skeletal muscle damage  相似文献   

9.
We examined the preferred mode of arm coordination in 14 elite male front-crawl swimmers. Each swimmer performed eight successive swim trials in which target velocity increased from the swimmer's usual 3000-m velocity to his maximal velocity. Actual swim velocity, stroke rate, stroke length and the different arm stroke phases were then calculated from video analysis. Arm coordination was quantified by an index of coordination based on the lag time between the propulsive phases of each arm. The index expressed the three coordination modes in the front crawl: opposition, catch-up and superposition. First, in line with the dynamic approach to movement coordination, the index of coordination could be considered as an order parameter that qualitatively captured arm coordination. Second, two coordination modes were observed: a catch-up pattern (index of coordination= -8.43%) consisting of a lag time between the propulsive phases of each arm, and a relative opposition pattern (index of coordination= 0.89%) in which the propulsive phase of one arm ended when the propulsive phase of the other arm began. An abrupt change in the coordination pattern occurred at the critical velocity of 1.8 m. s(-1), which corresponded to the 100-m pace: the swimmers switched from catch-up to relative opposition. This change in coordination resulted in a reorganization of the arm phases: the duration of the entry and catch phase decreased, while the duration of the pull and push phases increased in relation to the whole stroke. Third, these changes were coupled to increased stroke rate and decreased stroke length, indicating that stroke rate, stroke length, the stroke rate/stroke length ratio, as well as velocity, could be considered as control parameters. The control parameters can be manipulated to facilitate the emergence of specific coordination modes, which is highly relevant to training and learning. By adjusting the control and order parameters within the context of a specific race distance, both coach and swimmer will be able to detect the best adapted pattern for a given race pace and follow how arm coordination changes over the course of training.  相似文献   

10.
局部肌肉疲劳对踝关节本体感觉的影响   总被引:1,自引:0,他引:1  
张秋霞  张林  王国祥 《体育科学》2011,31(3):68-73,80
目的:通过分析局部肌肉疲劳前、后踝关节在矢状面内运动的位置觉、肌肉力觉的变化,探讨局部肌肉疲劳对踝关节本体感觉的影响,为踝关节损伤防治和康复训练提供基础理论和实验依据。方法:选取14名无踝关节疾患的受试者为实验对象,踝关节位置觉采用对踝关节跖屈5°的被动定位、被动复位能力进行测试,肌肉力觉采用受试者踝关节对跖屈肌群25%最大等长峰值力矩值的复制能力进行测试;疲劳测试采用60最大等速向心运动模式;对于局部肌肉疲劳前、后踝关节本体感觉的对比,采用重复测量方差分析进行。结果:踝关节的位置觉(VEJPS和AEJPS)和肌肉力觉(RVEFS和RAEFS)在局部肌肉疲劳前、后的差异均有统计学意义(P<0.05)。结论:1)最大等速向心运动至局部肌肉疲劳后,踝关节的位置觉均较疲劳前下降;2)最大等速向心运动至局部肌肉疲劳后,踝关节的肌肉力觉均较疲劳前下降;3)踝关节最大等速向心运动至局部肌肉疲劳后,受试者的中枢控制策略发生改变。  相似文献   

11.
Load carriage (LC) exercise in physically demanding occupations is typically characterised by periods of low-intensity steady-state exercise and short duration, high-intensity exercise while carrying an external mass in a backpack; this form of exercise is also known as LC exercise. This induces inspiratory muscle fatigue and reduces whole-body performance. Accordingly we investigated the effect of inspiratory muscle training (IMT, 50% maximal inspiratory muscle pressure (PImax) twice daily for six week) upon running time-trial performance with thoracic LC. Nineteen healthy males formed a pressure threshold IMT (n?=?10) or placebo control group (PLA; n?=?9) and performed 60?min LC exercise (6.5?km?h–1) followed by a 2.4?km running time trial (LCTT) either side of a double-blind six week intervention. Prior to the intervention, PImax was reduced relative to baseline, post-LC and post-LCTT in both groups (pooled data: 13?±?7% and 16?±?8%, respectively, p?PImax increased +31% (p?TT (+18%, p?PImax at each time point was unchanged (13?±?11% and 17?±?9%, respectively, p?>?.05). In IMT only, heart rate and perceptual responses were reduced post-LC (p?p?相似文献   

12.

Purpose

The purpose of this review was to assess the quality of evidence on inspiratory muscle training (IMT) in patients with heart failure and to provide an overview on subject selection, training protocols, and outcome achieved with IMT.

Methods

Literature search was first performed via the PubMed database, and additional references were identified from the Scopus citation index. Articles of the review type and of clinical trials published in English were included. Quality of the articles was assessed using Sackett''s levels of evidence and rigor of methodology was assessed using PEDro (Physiotherapy Evidence Database) criteria for randomized controlled trials and the Downs & Black tool for cohort studies.

Results

Twelve articles of clinical trials were included. Typical training protocols involved daily training with intensity greater than 30% of maximal inspiratory pressure (PImax), duration of 20 to 30 minutes (continuous or incremental) and using a pressure threshold muscle trainer. The effect sizes of PImax, walk test distance, and dyspnea were moderate to large across these studies. Effects on quality of life scores were inconsistent.

Conclusion

Inspiratory muscle training is beneficial for improving respiratory muscle strength, functional capacity, and dyspnea in patients with stable heart failure and respiratory muscle weakness.Key Words: inspiratory muscle training, heart failure, maximal inspiratory pressure  相似文献   

13.
We examined the preferred mode of arm coordination in 14 elite male front-crawl swimmers. Each swimmer performed eight successive swim trials in which target velocity increased from the swimmer's usual 3000-m velocity to his maximal velocity. Actual swim velocity, stroke rate, stroke length and the different arm stroke phases were then calculated from video analysis. Arm coordination was quantified by an index of coordination based on the lag time between the propulsive phases of each arm. The index expressed the three coordination modes in the front crawl: opposition, catch-up and superposition. First, in line with the dynamic approach to movement coordination, the index of coordination could be considered as an order parameter that qualitatively captured arm coordination. Second, two coordination modes were observed: a catch-up pattern (index of coordination?=??8.43%) consisting of a lag time between the propulsive phases of each arm, and a relative opposition pattern (index of coordination?=?0.89%) in which the propulsive phase of one arm ended when the propulsive phase of the other arm began. An abrupt change in the coordination pattern occurred at the critical velocity of 1.8?m?·?s?1, which corresponded to the 100-m pace: the swimmers switched from catch-up to relative opposition. This change in coordination resulted in a reorganization of the arm phases: the duration of the entry and catch phase decreased, while the duration of the pull and push phases increased in relation to the whole stroke. Third, these changes were coupled to increased stroke rate and decreased stroke length, indicating that stroke rate, stroke length, the stroke rate/stroke length ratio, as well as velocity, could be considered as control parameters. The control parameters can be manipulated to facilitate the emergence of specific coordination modes, which is highly relevant to training and learning. By adjusting the control and order parameters within the context of a specific race distance, both coach and swimmer will be able to detect the best adapted pattern for a given race pace and follow how arm coordination changes over the course of training.  相似文献   

14.
We evaluated the effects of specific inspiratory muscle training on simulated time-trial performance in trained cyclists. Using a double-blind, placebo-controlled design, 16 male cyclists (VO 2max = 64 - 2 ml·kg -1 ·min -1 ; mean - sx ¥ ) were assigned at random to either an experimental (pressure-threshold inspiratory muscle training) or sham-training control (placebo) group. Pulmonary function, maximum dynamic inspiratory muscle function and the physiological and perceptual responses to maximal incremental cycling were assessed. Simulated time-trial performance (20 and 40 km) was quantified as the time to complete pre-set amounts of work. Pulmonary function was unchanged after the intervention, but dynamic inspiratory muscle function improved in the inspiratory muscle training group ( P h 0.05). After the intervention, the inspiratory muscle training group experienced a reduction in the perception of respiratory and peripheral effort (Borg CR10: 16 - 4% and 18 - 4% respectively; compared with placebo, P h 0.01) and completed the simulated 20 and 40 km time-trials faster than the placebo group [66 - 30 and 115 - 38 s (3.8 - 1.7% and 4.6 - 1.9%) faster respectively; P = 0.025 and 0.009]. These results support evidence that specific inspiratory muscle training attenuates the perceptual response to maximal incremental exercise. Furthermore, they provide evidence of performance enhancements in competitive cyclists after inspiratory muscle training.  相似文献   

15.
Generally, swimmers pace themselves using their own judgement and the poolside clock during swimming training, fitness testing protocols or scientific investigation. The Aquapacer is a new pacing device that can be used to pace the swimming speed or stroke rate of the swimmer. The aims of this study were to determine if breaststroke swimmers could pace accurately during submaximal swimming using a poolside clock (Study 1) and the Aquapacer (Study 2), at swimming speeds at, just above and just below maximal 200 m time-trial speeds (using the Aquapacer, Study 3) and under three different race pacing conditions (using the Aquapacer, Study 4). Between 8 and 15 male national or club standard 200 m breaststroke swimmers participated in each of the studies. The swimmers in Study 2, despite being less well trained than the swimmers in Study 1 and part of a more heterogeneous group in terms of swimming performance, repeatedly demonstrated less random error in pacing, suggesting that the Aquapacer may be preferable to the poolside clock when swimmers are being required to pace accurately. The Aquapacer also enabled swimmers to pace accurately at race-specific swimming speeds (until fatigue precluded them from holding pace) (Study 3), and through a change in pace at race-specific speeds (Study 4), which suggests that it may be of use in entraining racing strategies.  相似文献   

16.
Abstract

Though clinical observations and laboratory data provide some support for the neuromuscular imbalance theory of the genesis of exercise-associated muscle cramps, no direct evidence has been published. The purpose of this study was to determine the effect of local muscle fatigue on the threshold frequency of an electrically induced muscle cramp. To determine baseline threshold frequency, a cramp was electrically induced in the flexor hallucis brevis of 16 apparently healthy participants (7 males, 9 females; age 25.1 ± 4.8 years). The testing order of control and fatigue conditions was counterbalanced. In the control condition, participants rested in a supine position for 30 min followed by another cramp induction to determine post-threshold frequency. In the fatigue condition, participants performed five bouts of great toe curls at 60% one-repetition maximum to failure with 1 min rest between bouts followed immediately by a post-threshold frequency measurement. Repeated-measures analysis of variance and simple main effects testing showed post-fatigue threshold frequency (32.9 ± 11.7 Hz) was greater (P < 0.001) than pre-fatigue threshold frequency (20.0 ± 7.7 Hz). An increase in threshold frequency seems to demonstrate a decrease in one's propensity to cramp following the fatigue exercise regimen used. These results contradict the proposed theory that suggests cramp propensity should increase following fatigue. However, differences in laboratory versus clinical fatiguing exercise and contributions from other sources, as well as the notion of a graded response to fatiguing exercise, on exercise-associated muscle cramp and electrically induced muscle cramp should be considered.  相似文献   

17.
Inspiratory muscle training (IMT) is becoming more popular in sporting populations as contentious issues associated with the magnitude of its effect as an ergogenic training aid are gradually dispelled. The authors believe that the efficacy of IMT can be further improved through development of the loading technologies. The basis for this belief is that current IMT stimuli do not simulate the demands placed upon the inspiratory muscles during exercise. We identify the design and initial trialling of a new, variable IMT technology, whereby the load throughout an inspiration can be adjusted to fit the dynamic pressure generating capacity of an individual. This should enable the exploration of high specificity in terms of inspiratory muscle loading as a possible means of further enhancing athletic performance. The new technology consists of a high-speed occlusion valve and control system that applies independent, sequential point loads to an inspiration. Manipulation of these point loads provides a fully variable loading profile. Twelve healthy adult male subjects participated in a feasibility study involving constant load, moderate intensity exercise in the presence of the load. The resulting data have been used to develop future recommendations for application and advancement of the technology.  相似文献   

18.
In this study, we examined the long-term reductions in maximal isometric force (MIF) caused by a protocol of repeated maximal isometric contractions at long muscle length. Furthermore, we wished to ascertain whether the reductions in MIF are dependent on muscle length--that is, are the reductions in MIF more pronounced when the muscle contracts at a short length. The MIF of the elbow flexors of seven young male volunteers was measured at five different elbow angles between 50 degrees and 160 degrees. On a separate day, the participants performed 50 maximal voluntary isometric muscle contractions with the elbow flexors at a lengthened position; that is, with the shoulder hyperextended at 45 degrees and the elbow joint fixed at 140 degrees. Following this exercise, the MIF at the five elbow angles, range of motion, muscle soreness and plasma creatine kinase activity were measured at 24 h intervals for 4 days. On day 1, the decline in MIF was higher at the more acute elbow angles of 50 degrees (42 +/- 8%) and 70 degrees (39 +/- 8%; both P<0.01) than at 90 degrees (26 +/- 4%) and 140 degrees (16 +/- 3%; both P<0.01). No significant reduction in MIF was evident at an elbow angle of 160 degrees. Maximal isometric force at an elbow angle of 140 degrees was fully restored on day 3, whereas at an angle of 50 degrees it remained depressed for the 4 day observation period. Restoration of MIF was a function of the elbow angle, with force recovery being less at the smaller angles. The range of motion was decreased by 14 +/- 2 degrees on day 1 (P<0.01) and did not return to baseline values by day 4. Muscle soreness ratings remained significantly elevated for the 4 day period. Serum creatine kinase peaked on day 1 (522 +/- 129 IU, P<0.01) and decreased thereafter. We conclude that the disproportionate decrease in MIF at the small elbow angles and the length-specific recovery in MIF after repeated maximal isometric contractions at long muscle length may be explained by the presence of overstretched sarcomeres that increased in series compliance of the muscle, therefore causing a rightward shift of the force-length relationship.  相似文献   

19.
Purpose: The purpose of the present review was to assess the quality of evidence in the literature regarding the specific benefits of inspiratory muscle training (IMT) with an emphasis on training intensity and the relationships between changes in inspiratory muscle function and other clinical outcome measures. Methods: Articles were found by searching CINAHL, PubMed, Medline via First Search, and ProQuest databases. Articles used in the review were randomized trials of IMT vs. sham IMT or no intervention, published in English in a peer-reviewed journal, included patients with chronic obstructive pulmonary disease (COPD), and specified the intensity of training. The quality of the studies was evaluated by 2 independent reviewers using the methodological rigor scale described by Medlicott and Harris as well as Sackett''s levels of evidence. Fifteen articles met the inclusion criteria and were used in this review. Results: Consistent improvements in maximal inspiratory pressures (ranging from −11 to −30 cm H2O) and inspiratory muscle endurance were found. Improvements in dyspnea and health-related quality of life were also observed. Inspiratory muscle training may result in improved exercise tolerance as measured using walking tests. High-intensity IMT resulted in improved training efficiency with respect to inspiratory muscle strength, but evidence of the effect of high-intensity IMT on other clinical outcomes is lacking. Conclusion: Despite research spanning decades, there are numerous limitations in the literature regarding IMT. IMT appears to improve dyspnea, waking test distance, and health-related quality of life in individuals with COPD, but it is not clear whether this improvement is mediated through improved inspiratory muscle strength and endurance. This review discussed several considerations critical to the design of future trials.Key Words: inspiratory muscle training, COPD  相似文献   

20.
Front crawl swimmers often restrict the number of breaths they take during a race because of the possible adverse effects of the breathing action on resistance or stroke mechanics. The aim of this study was to determine whether differences exist in the kinematics of the trunk and upper extremity used during preferred-side breathing and breath-holding front crawl swimming. Six male swimmers performed trials at their 200 m race pace under breathing and breath-holding conditions. The underwater arm stroke was filmed from the front and side using video cameras suspended over periscope systems. Video recordings were digitized at 50 Hz and the three-dimensional coordinates of the upper extremity obtained using a direct linear transformation algorithm. Body roll angles were obtained by digitizing video recordings of a balsa wood fin attached to the swimmers' backs. The swimmers performed the breathing action without any decrement in stroke length (mean +/- s: breathing 2.24 +/- 0.27 m; breath-holding 2.15 +/- 0.22 m). Stroke widths were similar in the breathing (0.28 +/- 0.07 m) and breath-holding (0.27 +/- 0.07 m) trials, despite swimmers rolling further when taking a breath (66 +/- 5 degrees) than when not (57 +/- 4 degrees). The timing of the four underwater phases of the stroke was also unaffected by the breathing action, with swimmers rolling back towards the neutral position during the insweep phase. In conclusion, the results suggest that front crawl swimmers can perform the breathing action without it interfering with their basic stroke parameters. The insweep phase of the stroke assists body roll and not vice versa as suggested in previous studies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号