首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
本文现将张角公式及其在数学竞赛解题中的应用介绍如下: 一、张角公式如图,设直线ACB外一视点P,对于线段AC、CB的张角分别为α、β,且α β<180°,则sin(α β)/PC=sinα/PB sinβ/PA 证明:∵△PAB=△PAC △PCB,∴1/2PA·PB·sin(α β)-1/2PA·PC·sinα 1/2PC ·PBsinβ。∴两边同除以1/2PA·PB·PC,即得欲证式。二、应用举例例1 连结正△ABC的外接圆劣弧AB上一点P的线段CP交AB于D,求证:1/PA 1/PB=1/PD(1990年山西省初中数学  相似文献   

2.
<正>张角公式如图1,设直线ACB外一点P对于线段AC、CB的张角分别为α、β,则sin(α+β)/PC=sinα/PB+sinβ/PA.证明因为S_(△PAB)=S_(△PAC)+S_(△PCB),所以1/2PA·PB·sin(α+β)=1/2PA·PC·sinα+1/2PC·PB·sinβ,两边同除以1/2PA·PB·PC,即得所证等式.下面举例说明它的应用.例1如图2,已知BP:PQ:QC=3:2:1,AG:GC=4:3,则BE:EF:FG=___.  相似文献   

3.
1.张角公式如图1,设直线ACB外一点P对于线段AC、CB的张角分别为αβ,则sin(α+β)/PC=sinα/PB+sinβ/PA证明:因为S△PAB=S△PAC+ S4PCB,所以1/2PA.PB·sin(α+β)=1/2PA·PC·sinα+1/2PC·PB·sinβ,两边同除以1/2PA·PB·PC,即得所证等式.  相似文献   

4.
本文介绍证明线段相等的新方法——比例式法.用比例式法证明线段相等有以下几种类型:一、要证线段a=b,可先证a/b=b/a例1 已知:从△ABC的AB边上一点P作PQ//BC,交AC于Q;从Q作QR//AB,交BC于R;从R作CA的平行线,恰好过P点.求证:P是AB的中点.分析 如图1,要证AP=PB,可从关于AP、PB的比例式着手.由PQ//BC,PR//AC知道AP:PB=AQ:QC,PB:PA=BR:RC.而QR//AB,则AQ:QC=BR:RC,故得AP:PB=PB:AP.∴AP=PB.即P是AB的中点.  相似文献   

5.
相交弦定理、切割线定理反映的是两组与圆有关的等积线段或比例线段 ,这是再介绍一组 ,供同行参考 .命题 :三角形外接圆上任一点到三角形各顶点的距离与到各顶点所对边的距离之积相等 .此命题试证如下 :设△ABC内接于⊙O ,P是⊙O上任一点 ,连结PA、PB、PC ,分别作PA′⊥BC ,PB′⊥AC ,PC′⊥AB ,垂足分别A′、B′、C′.求证 :PA·PA′ =PB·PB′=PC·PC′ .证明 :( 1 )当点P与A、B、C三点中某一点重合时 ,由点与点 ,点与直线的距离的规定可知此时 :PA·PA′ =PB·PB′ =PC·PC′=0 .( 2 )当点P不与A、B、C三点中任…  相似文献   

6.
应用张角公式求三线段的连比值,不仅富有新意、相当有效,而且能够化难为易、变繁为简.现以几道初中几何题为例,介绍这种创新的解法如下,供教师参考.一、张角公式如图1,设直线ACB外一点P对于线段AC、CB的张角分别为α、β,则(sin(α+β))/(PC)=(sinα)/(PB)+(sinβ)/(PA).证明:因为S△PAB=S△PAC+S△PCB,所以1/2PA·PB·sin(α+β)=1/2PA·PC·sinα+1/2PC·PB·sinβ,两边同除以1/2PA·PB·PC,即得所证等式.  相似文献   

7.
命题 若P是△ABC内的一点 ,记△BPC、△APC、△APB的面积为SA 、SB 、SC ,则SA ·PA SB ·PB SC ·PC =0 .证明 延长AP与BC边相交于D点 ,则|BD||DC| =S△ABDS△ACD=S△BPDS△PCD=-S△BPD-S△PCD等比定理 SCSB.记|BD||DC|=λ ,有BD=λDC ,所以PD- PB=λ( PC- PD) ,所以 - ( 1 λ) ·PD PB λPC=0 .又因为PD =- |PD||PA| · PA =-SASB SC·PA ,所以 SASB SC( 1 SCSB) ·PA PB SCSB ·PC=0 ,所以SA·PA SB·PB SC·PC =0 .推论 1 当P为△ABC的内心时 ,有sin…  相似文献   

8.
本文拟用以下引理给出三角形“五心”向量方程的一般形式.先约定三角形三内角A、B、C它们所对的边分别为a、b、c.引理:在△ABC内任取点P,则PA·SA PB·SB PC·SC=0(1)(其中SA、SB、SC分别表示△BPC,△CPA,△APB的面积).证明:设PA、PB、PC方向上的单位向量依次为e1,e2,e3并记∠B  相似文献   

9.
几何综合题     
总复习阶段,应有针对性地、适量地研究一些不同类型的几何综合题的解法.几何综合题大多是圆与平行线、三角形、四边形、相似三角形、锐角三角函数等知识的综合运用.近几年来,全国各地中考题中,一题多问、开放性题目是几何综合题常见类型.图1例1如图1,已知正△ABC内接于⊙O,P是劣弧BC上一点,PA交BC于点E.求证:(1)PA=PB+PC;(2)P1B+P1C=P1E.证明:(1)在AP上取一点D,使AD=PC,联结BD.易知△ABD≌△CBP.则BD=PB.又∠3=∠4=60°,所以△PBD是等边三角形.故PD=PB,即PA=PB+PC.(2)证法1:因为∠3=∠5=60°,∠1=∠2,所以,△PAB∽…  相似文献   

10.
利用三角形全等可证明线段相等,以及证明与线段相等有关的线段和、差、倍、分等问题;还可证明两角相等,以及证明与两角相等有关的线段平行、线段垂直等问题.例1如图,∠BAC=90°,AB=AC,F是BC上一点,BD⊥AF于D,E为AF延长线上一点,CE⊥AE,求证:DE=AE-CE.证明:∵CE⊥AE,BD⊥AF于D,∴∠AEC=∠BDA=90°.∴∠1=90°-∠3=∠2.在△AEC和△BDA中,∵∠1=∠2,∠AEC=∠BDA,AC=AB,∴△AEC≌△BDA.∴CE=AD.∵DE=AE-AD,∴DE=AE-CE.例2如图,在△ABC中,D是AB的中点,DE∥BC交AC于E,F是BC上的点,BF=DE,求证:DF∥AC.证…  相似文献   

11.
1.定理 如图1,由点P发出的三射线PA、PB、PC,且∠APC=α,∠CPB=β,∠APB=α β<180°,那么A、B、C三点在一直线上的充要条件是 证明 必要性:若A、B、C三点共线,则 S△PAB=S△PAC S△PCB,因此两边同除以1/2PA·PB·PC,即得所欲证的等式.  相似文献   

12.
不少的同学对于运用“三点定形”法证明线段的等比与等积得心应手,但对于同一直线上的线段成比例或者等积的题目感到困难·下面通过数例来介绍其方法·一例、1等线如代换图1,△ABC中,AB=AC,P是中线AD上一点,过C作CF∥AB交BP的延长线于F,BF交AC于E·求证:BP2=PE·PF·分析:三条线段在同一直线上,不能直接应用“三点定形”法证明,注意到P是BC垂直平分线上的点,可连PC,则PB=PC,即证PPCF=PPEC,可证△PCE∽△PFC·由∠EPC=∠CPF,易知∠ABP=∠ECP=∠F·所以命题得证·二例、2等比如代图换2,P为平行四边形ABCD对角线B…  相似文献   

13.
命题已知三棱锥P-ABC,Q是底面△ABC内的一点,S△BQC∶S△CQA∶S△AQB=α∶β∶γ,且α β γ=1.(ⅰ)一平面分别交PQ、PA、PB、PC于Q′、A′、B′、C′点,则PQPQ′=α.PPAA′ β.PPBB′ γ.PPCC′.(ⅱ)过P点的一个球面,分别交PQ、PA、PB、PC于Q′、A′、B′、C′点,则PQ′.PQ=α.PA′.PA β.PB′.PB γ.PC′.PC.为证明该命题,先介绍几个引理.引理1已知P为△ABC内一点,S△BPC∶S△CPA∶S△APB=m∶n∶r,延长AP交BC于M,则MBMC=nr,PAPM=n m r.引理2已知M为△ABC边BC上一点,且BMMC=mn,任作一直线…  相似文献   

14.
式子zx±zy=1是一个较为复杂的比例式,是基本比例式zx=my的变形.对这类题的证明学生颇感困难,为此,本文通过例题介绍几种形如“zx±zy=1”类问题的证明方法,仅供参考.图1题目如图1,正△ABC内接于⊙O,P是劣弧BC上任意一点,PA与BC交于点E.求证:1PB 1PC=1PE.策略1:“移项、合并”化为基本形式将zx±zy=1移项得zx=1zy,合并得zx=yzy.令yz=m,可变为基本比例形式.分析:欲证1PB 1PC=1PE,即证PEPB PEPC=1.移项得PEPC=1-PEPB,即PEPC=PB-PEPB.设PB-PE=x.只需证PEPC=xPB.证明:如图1,在PB上取一点H,使PH=PE,联结HE.由△ABC…  相似文献   

15.
平面几何中有一个与面积关系有关的张角公式,一般不引人注目。但在教学时,却发现张角公式能帮助解决许多几何题,有的还是典型的难题。现分两方面介绍如下,供初中数学教师教学时参考。一、张角公式已知由点P发出的三射线PA、PB、PC;且∠APC=α,∠CPB=β,∠APB=α β<180°,那么A、B、C三点在一直线上的充要条件是: sin(α β)/PC=sinα/PB sinβ/PA 证明:若A、B、C三点共线, 则△PAB=△PAC △PCB 故 1/2PA·PBsin(α β)=1/2PA·sinα 1/2PB·PCsinβ两边同除以1/2PA·PB·PC,即得所欲证的等式。反之,若命题中等式成立,则反推可得: △PAB=△PAC △PCB。这说明△ABC=|△PAB-△PAC-△PCB|=0,所以A、B、C三点共线。  相似文献   

16.
很多平面几何题的证明方法都不是唯一的.在平常的练习中有意识地进行一题多解,这对于沟通各部分数学知识的联系、拓宽自己的解题思路、提高分析问题和解决问题的能力,都是十分有益的.下面以一道题目的多种证法为例,说明平见证题的多向思维.例如图1,P为等边△ABC的外接圆BC上的一点.求证:PA=PB+PC.这是一道证明线段的和差关系的题目.可用常规的平几方法证,也可用代数方法或三角方法证.1.利用全等三角形来证分析一如图2,延长BP至D,使PD=PC,连结CD.那么PB+PC=PB+PD.欲证PA=PB+PC PA=BD △PAC≌…  相似文献   

17.
1 忽视等腰三角形或直角三角形顶点的变换性 例 1 Rt△ABC中,∠C=90°,AC=5,BC=12,P在直线AC上,△ABP是等腰三角形,求PC. 错解:∴△ABP是等腰三角形, ∴AP=AB=13 ∴PC=PA十AC=18 或PC=PA-AC=8. 评析:本题只考虑A为等腰三角形顶点,忽然了B、P也可以作为顶点.当B为顶点时,BP=BA,∴PC=CA=5;当P为顶点时,设PC=x,则PB=PA=PC CA=5 x, “∵PB2=PC2 CB2 ∴(x 5)2=x2 122  相似文献   

18.
本文在这里向读者介绍一个与面积有关的几何命题.定理由点 P 发出的三射线 PA、PB、PC,设L、M、N 分别在射线 PA、PB、PC 上,使得 PL/PA=λ_1,PM/PB=λ_2,PN/PC=λ_3(图1).则 L、M、N 三点共线的充要条件为S_(△PBC) S_(△PAB)  相似文献   

19.
引理(费尔马问题) 已知△ABC,使PA+PB+PC为最小的平面上的点P称为△ABC的费尔马点. 解:显见点P不可能在△ABC外. (1)若△ABC的每个内角都小于120°,将△ABP绕B点逆时针旋转60°至△A_1BQ的位置,如图1,则△BPQ为正三角形.于是PA+PB+Pc=A_1Q+QP+CP. ∵A_1、C为定点,欲使PA+PB+PC最小,P点应在A_1C上.  相似文献   

20.
【例1】已知(如图1),PB⊥AB,PC⊥AC,且PB=PC,D是A上的一点,求证:∠BDP=∠CDP.【错解】∵PB⊥AB,PC⊥AC,且PB=PC,∴∠PAB=∠PAC即AP是∠BAC的平分线.∵D是AP上的一点,∴DB=DC(角平分线上的点到角两边距离相等).在△PDB和△PDC中PB=PC,DB=DC,PD=PD∴△PDB≌△PDC(SSS).∴∠BDP=∠  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号