首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Teachers play a central role in inquiry science classrooms. In this study, we investigate how seven teacher variables (i.e., gender, experience, perceived importance of inquiry and traditional teaching, workshop attendance, partner teacher, use of technology) affect student knowledge integration understanding of science topics drawing on previous research. Using a two‐level hierarchical linear model, we analyze year‐end knowledge integration performance of 4,513 students taught by 40 teachers across five states. Results indicate that students of teachers who value inquiry teaching strategies have significantly higher levels of knowledge integration understanding than those of teachers who believe in traditional teaching methods. In addition, workshop attendance and having a partner teacher teaching the same unit in the same school also have a positive impact on students' knowledge integration levels. The results underscore the importance of professional development and collegial support in enhancing student success in inquiry science. © 2009 Wiley Periodicals, Inc. J Res Sci Teach 47:807–819, 2010  相似文献   

2.
The challenge of preparing students for the information age has prompted administrators to increase technology in the public schools. Yet despite the increased availability of technology in schools, few teachers are integrating technology for instructional purposes. Preservice teachers must be equipped with adequate content knowledge of technology to create an advantageous learning experience in science classrooms. To understand preservice teachers’ conceptions of technology integration, this research study explored 15 elementary science methods students’ definitions of technology and their attitudes toward incorporating technology into their teaching. The phenomenological study took place in a science methods course that was based on a constructivist approach to teaching and learning science through science activities and class discussions, with an emphasis on a teacher beliefs framework. Data were collected throughout the semester, including an open-ended pre/post-technology integration survey, lesson plans, and reflections on activities conducted throughout the course. Through a qualitative analysis, we identified improvements in students’ technology definitions, increased technology incorporation into science lesson plans, and favorable attitudes toward technology integration in science teaching after instruction. This research project demonstrates that positive changes in beliefs and behaviors relating to technology integration in science instruction among preservice teachers are possible through explicit instruction.  相似文献   

3.
This paper describes a qualitative approach to analysing students' concept maps. The classification highlights three major patterns which are referred to as 'spoke', 'chain' and 'net' structures. Examples are given from Year 8 science classes. The patterns are interpreted as being indicators of progressive levels of understanding. It is proposed that identification of these differences may help the classroom teacher to focus teaching for more effective learning and may be used as a basis for structuring groups in collaborative settings. This approach to analysing concept maps is of value because it suggests teaching approaches that help students integrate new knowledge and build upon their existing naive concepts. We also refer to the teacher's scheme of work and to the National Curriculum for science in order to consider their influence in the construction of understanding. These ideas have been deliberately offered for early publication to encourage debate and generate feedback. Further work is in progress to better understand how students with different conceptual structures can be most appropriately helped to achieve learning development.  相似文献   

4.

As a result of the reductionist approach to science curricula in tertiary education, students are learning science in a fragmented way. With the purpose of providing students with tools for a more holistic understanding of science, an integrated approach based on the use of general systems theory (GST) and the concept of 'mapping' scientific knowledge (its relationships, connections and generalities) is developed. GST is used as the core methodology for understanding science and its complexity. By analogy with geographic maps, we introduce scales of educational 'science maps' - scales of integration. Three principal scales of integration can be distinguished in GST, which we consider necessary for GST to be effectively applied in education. They are (a) the scale of branches and fields of science, (b) the scale of hypotheses and theories, and (c) the scale of structures and hierarchies. Examples of each of these three scales are provided from the field of physical science. The role of the scientific community in producing accessible, and essential, maps of scientific knowledge for science education is discussed.  相似文献   

5.
Encouraging students to be autonomous is an important goal of the scaffolded knowledge integration framework. Knowledge integration requires students to expand their repertoire of ideas but unless those ideas are reflected upon, they cannot be linked to and reconciled with current ideas. Students are capable of doing this kind of reflection but, many need scaffolding. Scaffolding here in the form of reflection prompts can help students be autonomous integrators of their knowledge. This research investigated learning and design questions. It determined whether reflection prompts promote knowledge integration for students working on science projects and investigated the effects of students' different dispositions on their reflection. It explored which characteristics of prompts best support students in knowledge integration. The learning results indicate that prompting students to reflect significantly increases knowledge integration in science projects. Yet similar prompts elicit qualitatively diverse responses from students. Students who focus on their ideas perform significantly better on the end product than do other students who focus on their actions or activities. Furthermore, students who indicate that they understand everything perform significantly worse on the final project than do other students. The design results show that self-monitoring prompts, which encourage planning for and reflection on activities, help students to demonstrate an integrated understanding of the relevant science; while activity prompts, which guide the inquiry process, are less successful in prompting knowledge integration.  相似文献   

6.
Current research indicates that student engagement in scientific argumentation can foster a better understanding of the concepts and the processes of science. Yet opportunities for students to participate in authentic argumentation inside the science classroom are rare. There also is little known about science teachers' understandings of argumentation, their ability to participate in this complex practice, or their views about using argumentation as part of the teaching and learning of science. In this study, the researchers used a cognitive appraisal interview to examine how 30 secondary science teachers evaluate alternative explanations, generate an argument to support a specific explanation, and investigate their views about engaging students in argumentation. The analysis of the teachers' comments and actions during the interview indicates that these teachers relied primarily on their prior content knowledge to evaluate the validity of an explanation rather than using available data. Although some of the teachers included data and reasoning in their arguments, most of the teachers crafted an argument that simply expanded on a chosen explanation but provided no real support for it. The teachers also mentioned multiple barriers to the integration of argumentation into the teaching and learning of science, primarily related to their perceptions of students' ability levels, even though all of these teachers viewed argumentation as a way to help students understand science. © 2012 Wiley Periodicals, Inc. J Res Sci Teach 49: 1122–1148, 2012  相似文献   

7.
This study examined the relationships that exist between high school science teachers' understanding of the Piagetian developmental model of intelligence, its inherent teaching procedure—the learning cycle—and classroom teaching practices. The teachers observed in this study had expressed dissatisfaction with the teaching methods they used, and, subsequently, attended a National Science Foundation sponsored in-service program designed to examine laboratory-centered science curricula and the educational and scientific theories upon which the curricula were based. The teachers who exhibited a sound understanding of the Piagetian model of intelligence and the learning cycle were more likely to effectively implement learning cycle curricula. They were able to successfully integrate their students' laboratory experiences with class discussions to construct science concepts. The teachers who exhibited misunderstandings of the Piagetian developmental model of intelligence and the learning cycle also engaged their students in laboratory activities, but these activities were weakly related to learning cycles. For example, the data gathered by their students were typically not used in class discussions to construct science concepts. Therefore, these teachers apparently did not discern the necessity of using the data and experiences from laboratory activities as the impetus for science concept attainment. Additional results comparing degrees of understanding, teaching behaviors and questioning strategies are discussed.  相似文献   

8.
9.
ABSTRACT

This research draws on a longitudinal study in which middle school math and science teachers enacted STEAM (science, technology, engineering, art and mathematics) teaching in their classroom after participating in intensive STEAM professional development aimed at increasing effective STEAM teaching. The authors address one important aspect in STEAM teaching, technology integration practices of teachers during instruction, and theorise their work using connected learning theory. Qualitative case study is used to identify and describe technology integration themes which emerged during STEAM instruction. Results suggest 17 of the 21 teachers participating in the study demonstrated technology integration involving one or more areas of instructional approaches, assessment and student use. The research expands what we know about how technology can be integrated in STEAM instruction and suggests ways to capitalise on technology to broaden access and appeal to all students during STEAM instruction.  相似文献   

10.

This study looks at the effects of a science-technology-society (STS) in-service programme, designed to change teachers' awareness and practice of STS/constructivist approaches, while also focusing on students' understandings and changes of perceptions of the constructivist learning environments. The STS in-service programme was developed to achieve the following features: teacher-oriented, teaching in a social context, emphasis on a 'constructivist' approach, developing STS units and their use in classrooms. A total of 20 middle and high school science teachers participated in the in-service programme in 1998; and three of the middle school teachers were selected to gain information from their implementation of a Reactions of Acids and Bases unit in their respective classrooms. The Science Education Reform Inventory was administered to all the teachers at both the opening and the end of the programme. One hundred twenty-five students of the three teachers experienced about 16 class hours of lessons comprising the new STS unit. At the beginning and the end of the unit, they completed the Constructivist Learning Environment Survey. In order to assess student understanding, teachers administered the creativity test before and after the unit; and the concept acquisition test and the application test after the unit. Students obtained at average 48% of the 35 key concepts and 6.6 additional non-key concepts after the unit was finished. Students made more relevant and creative responses on unfamiliar situations on the post-test than on the pre-test. Through several tasks including a short essay, students showed their abilities to apply various concepts related to acids and bases to daily life situation. It was found that the STS programme improved the teachers' awareness and practices of the science education reforms characterized by STS and constructivism. The middle school science teachers could develop STS units which they implemented in their own classrooms. They could work together in developing units and reflecting on their teachings through video recordings of science classes. They were willing to assess various aspects of learning such as creativity, application and concept acquisition. Students perceived that the classroom environments improved in terms of personal relevance of contents, scientific uncertainty and student participation. The results showed that the STS in-service programme was effective and could be implemented successfully with Korean science teachers.  相似文献   

11.
This paper addresses the parallel between the changes in students' and teachers' learning advocated by constructivist science educators. It begins with a summary of the epistemology of constructivism and uses a vignette drawn from a set of case studies to explore the impact of a constructivist science in‐service programme on an experienced and formal elementary science teacher. Judged by constructivist standards, the teacher described in the vignette makes very little progress. The irony of applying a constructivist critique to his work, however, is that it fails to treat the teachers' imperfect knowledge of teaching with the same respect as constructivists treat students' imperfect learning of science. The remainder of the paper explores this constructivist paradox, and suggests that‐like students' knowledge of science‐teachers' knowledge of constructivist science teaching is likely to grow through slow and gradual re‐formation of their established understanding of classroom theory and practice.  相似文献   

12.
13.
This study explored the relationships among preservice teachers' conceptions of teaching using mobile devices and the quality of technology integration in lesson plans. A total of 47 preservice teachers in Taiwan who had experienced designing their own lesson plans and teaching materials (ie, eBooks and applications) for teaching using mobile devices (ie, smart phones and tablet PCs) participated in this study. The results showed that four qualitatively different conceptions of teaching using mobile devices were identified, namely “technology support,” “knowledge transmission,” “learning facilitation,” and “supporting students to learn.” This study also found that the teachers who had more constructivist perceptions of teaching using mobile devices, such as facilitating students' understanding in a convenient way or supporting student learning in a more active way, appeared to attain better quality technology integration in their lesson plans than those teachers with traditional conceptions.  相似文献   

14.
ABSTRACT

The authors find justification for integrating science, technology, engineering, and mathematics (STEM) in the complex problems that today's students will face as tomorrow's STEM professionals. Teachers with individual subject-area specialties in the STEM content areas have limited experience in integrating STEM. In this study, the authors investigated the conceptual changes of secondary school teachers teaching domain-specific STEM courses after a week-long professional development experience integrating earthquake engineering and domain-specific concepts. They documented and then triangulated outcomes of the experience using participating teachers' concept maps and teacher-generated written materials, respectively. Statistical comparisons of participants' concept maps revealed significant increases in their overall understanding of earthquake engineering and more accurate linkages with and among science domain-specific concepts. Content analyses of teachers' learning products confirmed the concept map analysis and also provided evidence of transfer of workshop learning experiences into teacher-designed curriculum products accurately linking earthquake engineering and domain-specific STEM content knowledge.  相似文献   

15.
不同教学方式对增进知识和提升能力有不同的作用。本实验的假设是在主体间师生关系中,通过教师有效选择和整合主题讲授、问题发现和主题问题建构等三种教学方式,有效增进学生的科学知识和提升学生的科学能力,目的是通过有效的科学知识教学促进学生科学能力的发展,使科学知识教学和科学能力发展相互促进。  相似文献   

16.

Responses to a written beliefs test for 178 eighth grade students and interviews with a subset of the students are analysed to investigate students' beliefs about the tentativeness of scientific knowledge and about the autonomy and strategies appropriate for science learning. These three dimensions of beliefs are salient because they align with the image of science teaching promoted by current reform movements. Analyses focus on change in beliefs and relationships among dimensions of beliefs and between those beliefs and students' understandings of science concepts. Results show that students' beliefs do not change much during the one-semester course. Students who view scientific knowledge as tentative also try to understand science. Autonomous students do not hold the most productive learning strategies, though students with low autonomy develop significantly less coherent understandings of science concepts. Instructional implications focus on potential roles of teachers and technology in promoting productive beliefs about scientific knowledge and science learning. Implications for individualized instruction follow classroom-level implications.  相似文献   

17.
18.
ABSTRACT

Graduate students regularly teach undergraduate STEM courses and can positively impact students’ understanding of science. Yet little research examines graduate students’ knowledge about nature of science (NOS) or instructional strategies for teaching graduate students about NOS. This exploratory study sought to understand how a 1-credit Teaching in Higher Education course that utilised an explicit, reflective, and mixed-context approach to NOS instruction impacted STEM graduate students’ NOS conceptions and teaching intentions. Participants included 13 graduate students. Data sources included the Views of Nature of Science (VNOS-Form C) questionnaire administered pre- and post-instruction, semi-structured interviews with a subset of participants, and a NOS-related course project. Prior to instruction participants held many alternative NOS conceptions. Post-instruction, participants’ NOS conceptions improved substantially, particularly in their understandings of theories and laws and the tentative nature of scientific knowledge. All 12 participants planning to teach NOS intended to use explicit instructional approaches. A majority of participants also integrated novel ideas to their intended NOS instruction. These results suggest that a teaching methods course for graduate students with embedded NOS instruction can address alternative NOS conceptions and facilitate intended use of effective NOS instruction. Future research understanding graduate students' NOS understandings and actual NOS instruction is warranted.  相似文献   

19.
Abstract

This study assessed 4th, 8th, and 11th grade students' understanding of natural and social science concepts related to pollution. A representative sample of public school students (n = 105) in 11 Maine schools was selected, and students were interviewed on four concept principles considered critical to a full understanding of the pollution problem. The concept of pollution included the much publicized issues of solid and toxic waste as well as air, soil, and water pollution. Research assertions were summarized in generalized correct concept statements indicating the extent of current student knowledge. Common misconceptions were also noted.

This study considered student understanding from a human ecological perspective, that is, as an integrated set or cluster of concepts related to pollution. This reflects a complex, integrated, and multidisciplinary conception of natural phenomena. Human constructivism, meaningful learning theory, and principles related to the relevance of student schema in the design of curriculum and instructional strategies guided this work.

The results of this study have implications for teaching about pollution and the design of science education curriculum materials based upon student knowledge. This information can guide teaching strategies concerning current environmental problems and thus help learners gain an appreciation for the complex and multi-disciplinary nature of science, technology, and society and how they affect the environment.  相似文献   

20.
《师资教育杂志》2012,38(1):95-109

This paper reports the findings of a study which investigated primary BEd student teachers' scientific backgrounds, attitudes towards science and towards teaching science, their confidence to teach science, and their scientific knowledge and understanding. The findings are discussed in relation to what primary teachers need to know in order to be able to teach science, and to our developing understanding of how science is perceived, experienced and understood by learners. The paper concludes with a discussion of the effectiveness of a pilot course developed to address the issues raised by the study. It is 'learner centred' and focused on the development of knowledge and understanding rather than process, and on factors likely to promote pupil (and student) understanding. The outcomes of the pilot work raise further substantive issues.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号