首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 23 毫秒
1.
2.

The Next Generation Science Standards support understanding of the nature of science as it is practiced and experienced in the real world through interconnected concepts to be imbedded within scientific practices and crosscutting concepts. This study explored how fourth and fifth grade elementary students’ views of nature of science change when they engage in a technology-enhanced, scientific inquiry-oriented curriculum that takes place across formal and informal settings. Results suggest that student engagement in technology-enhanced inquiry activities that occur in informal and formal settings when supported through explicit instruction focused on metacognitive and social knowledge construction can improve elementary students’ understanding of nature of science.

  相似文献   

3.
Abstract

This think piece focuses on relevance in secondary science education to propose a research agenda for contexts in sub-Saharan Africa, where enrolments are expanding from a low base. The notion of sustainable work is used to consider what kind of science education is relevant for students who will continue to become science specialists and those who will apply their science knowledge in non-specialist paid and unpaid roles. Drawing on insights from the literature on science and indigenous knowledge, on education for sustainable development and sociolinguistic analysis of science classrooms, it is argued that making connections between informal and formal knowledge is essentially the work of secondary education. Understanding secondary education in these terms highlight its vital contribution to addressing sustainable development, which at its heart recognises the interconnectedness of human and natural systems.  相似文献   

4.
Background: Uncertainty is a crucial element of scientific knowledge growth. Students should have some understanding of how science knowledge is developed and why scientific conclusions are considered more or less certain than others. A component of the nature of science, it is considered an important aspect of science education and allows students to recognize the limitations of scientific research.

Purpose: This study examined Grades 5 and 9 students’ views of uncertainty in their personal scientific research and the formal scientific research of professionals.

Sample: This study included 33 students in Grade 5 (= 17) and Grade 9 (= 16). The students were recruited from a charter school that emphasised inquiry instruction.

Design and methods: Data were collected through interviews. Students were asked their views of their inquiry-based projects and their views of professional science.

Results: Interview data and statistical analyses indicated that students recognized uncertainty in personal science, which varied across elements of the scientific process. Additionally, their views of uncertainty in formal science tended to change across grades and knowledge of uncertainty in personal and formal science were positively correlated.

Conclusion: These findings offer insights into the processes by which students come to understand uncertainty in science and point to ways of fostering such knowledge through teaching practices.  相似文献   


5.
6.
ABSTRACT

The authors find justification for integrating science, technology, engineering, and mathematics (STEM) in the complex problems that today's students will face as tomorrow's STEM professionals. Teachers with individual subject-area specialties in the STEM content areas have limited experience in integrating STEM. In this study, the authors investigated the conceptual changes of secondary school teachers teaching domain-specific STEM courses after a week-long professional development experience integrating earthquake engineering and domain-specific concepts. They documented and then triangulated outcomes of the experience using participating teachers' concept maps and teacher-generated written materials, respectively. Statistical comparisons of participants' concept maps revealed significant increases in their overall understanding of earthquake engineering and more accurate linkages with and among science domain-specific concepts. Content analyses of teachers' learning products confirmed the concept map analysis and also provided evidence of transfer of workshop learning experiences into teacher-designed curriculum products accurately linking earthquake engineering and domain-specific STEM content knowledge.  相似文献   

7.
8.

Informal learning experiences have risen to the forefront of science education as being beneficial to students' learning. However, it is not clear in what ways such experiences may be beneficial to students; nor how informal learning experiences may interface with classroom science instruction. This study aims to acquire a better understanding of these issues by investigating one aspect of science learning, scientific reasoning ability, with respect to the students' informal learning experiences and classroom science instruction. Specifically, the purpose of this study was to investigate possible differences in students' scientific reasoning abilities relative to their informal learning environments (impoverished, enriched), classroom teaching experiences (non-inquiry, inquiry) and the interaction of these variables. The results of two-way ANOVAs indicated that informal learning environments and classroom science teaching procedures showed significant main effects on students' scientific reasoning abilities. Students with enriched informal learning environments had significantly higher scientific reasoning abilities compared to those with impoverished informal learning environments. Likewise, students in inquirybased science classrooms showed higher scientific reasoning abilities compared to those in non-inquiry science classrooms. There were no significant interaction effects. These results indicate the need for increased emphases on both informal learning opportunities and inquiry-based instruction in science.  相似文献   

9.

Providing learning environments that are motivating for female students and male students alike is a challenge for science educators. This overview of the research conducted in science museums provides initial insights into informal educational settings that allow female visitors to have experiences which foster development of science interest and learning. The discussion of the influence of gender on learning experiences in informal science environments raises questions and calls for further research and more comprehensive reporting of research results. Findings related to gender‐equitable learning in settings such as science museums would be beneficial and extend the present knowledge base in science education.  相似文献   

10.
ABSTRACT

Background: As inquiry-based instruction is not universally implemented in science classrooms, it is crucial to introduce instructional strategies through the use of contextualized learning activities to allow students with different background knowledge and abilities to learn the essential competencies of scientific inquiry and promote their emotional perception and engagement.

Purpose: This study explores how essential scientific competencies of inquiry can be integrated into classroom teaching practices and investigates both typical and gifted secondary students’ emotional perception and engagement in learning activities.

Sample: A case teacher along with 226 typical and 18 gifted students from a suburban secondary school at Taiwan participated in this study.

Design and methods: After attending twelve 3-hour professional development workshops that focused on scientific inquiry teaching, the case teacher voluntarily developed and elaborated her own teaching activities through the discussions and feedback that she received from workshop participants and science educators. Quantitative and qualitative data were collected through activity worksheet, questionnaire, video camera, and tape recorders. Frequency distribution, Mann-Whitney U test, and discourse analysis were used for data analyses.

Results: Case teacher’s teaching activities provide contextual investigations that allow students to practice making hypotheses, planning investigations, and presenting and evaluating findings. Students’ learning outcomes reveal that typical students can engage in inquiry-based learning with positive emotional perception as well as gifted students regardless of their ability level. Both gifted and typical students’ positive emotional perception of and active engagement in learning provide fresh insight into feasible instructions for teachers who are interested in inquiry-based teaching but have little available time to implement such instructions into their classrooms.

Conclusions: The results of our work begin to address the critical issues of inquiry-based teaching by providing an exemplary teaching unit encompassing essential scientific competencies  相似文献   

11.
Background: The population of Mauritius consists of 52% females and scientific literacy is seen to be of vital importance for all young people if they are to be sufficiently equipped to meet the challenges of a fast changing world. Previous research shows, however, that science is not popular among girls. This paper explores one of many reasons why few girls opt for science subjects after compulsory schooling.

Purpose: This study investigated the approaches to teaching in four science classrooms in Mauritius, with particular emphases on the preferences of girls as they learn science.

Sample: A total of 20 student interviews and 16 teacher interviews were conducted in four schools in Mauritius. The four mixed-faith schools comprised two all-girl schools (one state, one fee-paying), and two mixed-sex schools (one state, one fee-paying), within urban, suburban and rural situations.

Design and method: 80 non-participant lessons were observed, of which 60 were science lessons while the remaining 20 non-science lessons were in economics, accounts and commerce. Group interviews with five pupils in each of the four schools were conducted and 16 individual interviews with teachers in the four schools gave an insight into the pedagogic approaches used for the teaching and learning of science.

Results: Transmissive approaches to teaching, giving little opportunity for collaborative or activity-based learning, were found to be the most important factors in alienating the girls from science.

Conclusions: There need to be radical changes in approaches to teaching to retain young girls’ interest in the sciences.  相似文献   

12.
ABSTRACT

In this interpretive case study, we draw from sociocultural theory of learning and culturally relevant pedagogy to understand how urban students from nondominant groups leverage their sociocultural experiences. These experiences allow them to gain an empowering voice in influencing science content and activities and to work towards self-determining the sciences that are personally meaningful. Furthermore, tying sociocultural experiences with science learning helps generate sociopolitical awareness among students. We collected interview and observation data in an urban elementary classroom over one academic year to understand the value of urban students’ sociocultural experiences in learning science and choosing science activities.  相似文献   

13.
ABSTRACT

Context-based approaches can bridge the gap between abstract, difficult science concepts and the world students live in. However, the relevance of specific contexts to different groups of learners, and its stability over time, have not been extensively explored. This study used four datasets, collected in different formal and informal settings, to examine which types of contexts could capture the interest of many students and remain so for many years. In the formal setting, responses to closed-ended questionnaires in which 4–12th graders indicated their interest in studying the answers to science questions were compared. Over 700 questionnaires collected in 2007 were compared to over 1600 questionnaires collected in 2016. To document the stability of children’s interest in informal science learning settings we compared over 1600 science questions sent to a TV science show in 2004 with over 7000 science questions submitted to a commercial exhibition in 2014. Although there were some differences across ages, students’ interest in science remained relatively stable over the 10 years. In the formal setting, this similarity was reflected in the significant linear relationship between the two databases (r?=?0.917) with regard to the questions students found interesting. In the informal setting, there was a striking similarity in the proportions of spontaneous questions in biology, astrophysics, Earth Science and chemistry. Based on the findings of this study and the literature we recommended, frequently asked questions are a valuable resource for context-based teaching which can serve to identify contexts that enhance the relevance of science in students’ lives.  相似文献   

14.
Background: Helping upper elementary and lower secondary school students develop an awareness of various aspects of the nature of science (NOS) and nature of technology (NOT) is a widely recognized goal of science teaching. In this study, we focus on the connections between science and technology (S&T).

Purpose: We report on the design, development, enactment and evaluation of a teaching-learning sequence (TLS) that combines hands-on activities in geometrical optics with explicit epistemological discourse for reflection purposes. The design of the TLS draws on perspectives from the inquiry-oriented and design-based teaching and learning frameworks.

Sample: The enactment of the TLS involved a class of 17 sixth-grade students, aged 10–11 years old, of a public elementary school in Cyprus.

Design and methods: We present findings from written responses to both closed and open-ended tasks as well as follow-up semi-structured interviews that probed students’ understanding of the difference between the main goals of S&T.

Results: The results illustrate elementary students’ readiness to engage with epistemic issues and demonstrate the potential of prompting young learners’ ability to develop informed awareness of the NOS and NOT. The results also provided feedback for the revision of the TLS so as to further enhance its effectiveness in achieving the stated learning objectives.

Conclusion: We discuss the implications of our findings for the teaching of the NOS and NOT and for the design and validation of TLSs. It is possible for students of this age group to develop an awareness of issues related to the NOS and NOT. TLSs can be improved through design-based research approaches to serve as productive tools to this end.  相似文献   

15.
ABSTRACT

Concerns have been expressed that the engagement shown by committed individuals is not fully utilized by their organizations while there is insufficient knowledge of which conditions facilitate teaching collaboration and lead to improvements in university education. Portfolios of 43 life science academics applying to enter to the University of Helsinki Teachers’ Academy were analyzed through content analysis. Five categories of interactive or collaborative practices emerged from the data: (1) Interacting with peers for personal development, (2) Sharing good teaching practices, (3) Teaching together, (4) Producing educational artefacts, (5) Developing education systematically. The practices occurred in both formal and informal settings, and both settings were present in all categories. In contrast with the formal practices, the informal practices were described in an enthusiastic way. The engagement shown by the scholarly teachers was mostly realized in informal settings. There is probably unrealized potential in the scholarly teachers’ teaching-related practices through which they could contribute to the development of teaching in academia. Formal communities related to teaching should be developed to promote deeper collaboration and to foster the participants’ feeling of personal commitment and ownership.  相似文献   

16.
In 1990, a large proportion of third year primary trainee teachers at Victoria College had observed or taught very few or no science lessons during the first two years of their course. The students felt that a lack of content knowledge, a crowded school curriculum, and problems associated with managing resources and equipment, were the main factors contributing to the low level of science being taught in schools. By the end of their third year significantly more students had taught science than after the second year. There was also a change in approach to teaching science with more practical activities being included than previously. The science method unit taught to the students in the third year of their course contributed to this increase. The students considered the hands-on activities in class to have been the most effective aspect of the unit in their preparation for the teaching of primary science. Specializations: children's learning in science, primary teacher education. Specializations: student understanding of biology, evaluation of formal and informal educational settings. Specializations: gender, science and technology, environmental education. Specializations: children's learning in science, language and science.  相似文献   

17.
Abstract

This exploratory study aimed to describe the impact of the ‘Science in Family project’, as a transformative learning model for science teachers trying to improve student’s attitudes toward STEM subjects. This study took place in a public elementary school in Monterrey, Mexico, which has been developing this project for more than thirteen years with students from 4th, 5th and 6th grade. We used participant observation and interviews with four families whose children are students of this elementary school, and with one family whose sons were students of this school some years ago. Results showed that there is a relationship between positive attitudes towards science in students who were exposed to transformative learning models of teaching. Two of the participants took steps to follow science related careers. This study helps to illuminate the extent to which teacher education models influence students’ attitudes and how positive attitudes to science are influenced by the use of learning by doing projects.  相似文献   

18.
Background : The Trends in International Mathematics and Science Study (TIMSS) assesses the quality of the teaching and learning of science and mathematics among Grades 4 and 8 students across participating countries.

Purpose : This study explored the relationship between positive affect towards science and mathematics and achievement in science and mathematics among Malaysian and Singaporean Grade 8 students.

Sample : In total, 4466 Malaysia students and 4599 Singaporean students from Grade 8 who participated in TIMSS 2007 were involved in this study.

Design and method : Students’ achievement scores on eight items in the survey instrument that were reported in TIMSS 2007 were used as the dependent variable in the analysis. Students’ scores on four items in the TIMSS 2007 survey instrument pertaining to students’ affect towards science and mathematics together with students’ gender, language spoken at home and parental education were used as the independent variables.

Results : Positive affect towards science and mathematics indicated statistically significant predictive effects on achievement in the two subjects for both Malaysian and Singaporean Grade 8 students. There were statistically significant predictive effects on mathematics achievement for the students’ gender, language spoken at home and parental education for both Malaysian and Singaporean students, with R 2 = 0.18 and 0.21, respectively. However, only parental education showed statistically significant predictive effects on science achievement for both countries. For Singapore, language spoken at home also demonstrated statistically significant predictive effects on science achievement, whereas gender did not. For Malaysia, neither gender nor language spoken at home had statistically significant predictive effects on science achievement.

Conclusions : It is important for educators to consider implementing self-concept enhancement intervention programmes by incorporating ‘affect’ components of academic self-concept in order to develop students’ talents and promote academic excellence in science and mathematics.  相似文献   

19.
ABSTRACT

What are the current challenges and opportunities for bringing actor-network theory (ANT) into issues-based science education? This article discusses experiences gained from introducing an educational version of ANT deploying digital technology into an upper secondary school science class. This teaching innovation, called controversy mapping, has been pioneered in different contexts of higher education before being adapted to school education. Experimenting with controversy mapping in a Swedish science class raised both conceptual and practical issues. These centre on: (1) how ANT-inspired controversy mapping redesigns the citizenship training enacted by institutionalized approaches to issues-based education as socioscientific issues (SSI); (2) how controversy mapping reconfigures the interdisciplinarity of issues-based science education; and (3) how controversy mapping displaces scientific literacy and knowledge of the nature of science as guiding concerns for teaching in favour of new preoccupations with digital literacy and digital tools and methods as contemporary infrastructures of free and open inquiry.  相似文献   

20.
ABSTRACT

Research suggests that it is challenging for elementary students to develop conceptual understanding of trait variation, inheritance of traits, and life cycles. In this study, we report on an effort to promote elementary students’ learning of hereditary-related concepts through scientific modelling, which affords opportunities for elementary students to generate visual representations of structure and function associated with heredity. This study is part of a four-year design-based research project aimed at supporting students’ learning about life science concepts using corn as a model organism. Study data were collected during the implementation of a project-developed, multi-week, model-based curriculum module in eight third-grade classrooms located in the Midwestern United States. Through mixed methods research, we analysed video recorded observations of curriculum implementation, student artefacts, and student interviews. Results illustrate epistemic dimensions of model-based explanations (MBEs) for heredity that students prioritised, as well as significant variation in students’ MBEs in 2 of the 8 classrooms. While findings show neither students’ content knowledge nor model-based instruction associated with their MBEs, qualitative differences in teachers’ curriculum enactment, and more general approaches to science instruction, may help explain observed differences. Implications are discussed for curriculum and instruction in support of students’ MBE for heredity-related concepts.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号