首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 15 毫秒
1.
《河西学院学报》2018,(2):22-28
建立了一类具有指数出生和标准发生率的SEIR传染病模型,同时讨论了系统平衡点的存在性,分析求得了基本再生数R_0.当R_0<1时,通过构造适当的Liapunov函数,得到无病平衡点是全局渐近稳定的,疾病最终灭绝;当R_0>1时,无病平衡点不稳定,存在唯一的地方病平衡点是局部渐近稳定的,疾病最终形成地方病,然后进行了数值模拟,最后讨论了Hopf分岔的存在性.  相似文献   

2.
通过黄龙病在柑橘中的传播机理,建立了一个媒介传染病动力学模型.利用LaSalle不变性原理,Ben-dixson-Dulac定理证明了当R0≤1时无病平衡点全局渐近稳定,当R0>1时地方病平衡点全局渐近稳定.  相似文献   

3.
根据肺结核的传播特点,建立了带潜伏期和潜伏年龄的数学模型.证明了当基本再生数R0<1时,系统无病平衡点是局部和全局渐近稳定的;当R0>1时,无病平衡点不稳定,此时系统存在一个地方病平衡点,并证明了该地方病平衡点是局部渐近稳定的.  相似文献   

4.
研究了具有连续预防接种和垂直传染SIR传染病模型,获得了疾病绝灭和持续的基本再生数σ,证明了当σ<1时仅有无病平衡点存在,全局渐近稳定;当σ>1时无病平衡点不稳定,地方病平衡点存在,全局渐近稳定.  相似文献   

5.
建立了一类考虑钉螺总数变化的血吸虫病动力学模型,利用谱半径的方法计算得到基本再生数R0,证明了当R0<1时无病平衡点全局渐近稳定,当R0>1时地方病平衡点全局渐近稳定.  相似文献   

6.
研究了n个斑块间人口流动的疫苗接种的SVIR模型的全局稳定性。首先利用下一代矩阵的方法求得基本再生数R0。其次,应用非负矩阵以及非主对角元非负矩阵的相关知识给出了当R0<1时,无病平衡点是局部渐近稳定的,当R0>1时,无病平衡点是不稳定的;并且运用Lasalle不变原理证明了当R0<1时,无病平衡点的全局渐近稳定性。最后应用李雅普诺夫函数法、Lasalle不变原理并结合图论的方法证明了当R0>1时,疾病是一致持续存在的,同时地方病平衡点唯一存在且是全局渐近稳定的。  相似文献   

7.
建立了一类具有病例失踪的结核病数学模型,定义了模型的基本再生数R0,通过构造适当的Lyapunov函数证明了模型解的渐近性态.证明了当基本再生数小于1时,无病平衡点是全局渐近稳定的;当基本再生数大于1时,唯一的地方病平衡点是全局渐近稳定的.  相似文献   

8.
《滨州学院学报》2022,(6):52-56
研究了一类具有媒体影响和饱和治疗函数的SIR传染病模型,计算了基本再生数R_0,并分析了模型平衡点的存在性和稳定性。当R_01时,地方病平衡点E_1全局渐近稳定。最后,通过数值分析验证结论。  相似文献   

9.
研究了一类具有连续接种免疫和潜伏期的SEIVR流行病模型,通过计算下一代矩阵得到了疾病流行与否的阈值-基本再生数.并运用Routh-Hurtwiz判据,Lyapunov函数以及La Salle不变集原理证明了当R01时,模型存在唯一的无病平衡点P0,且P0全局渐近稳定;当R01时,模型存在两个平衡点,无病平衡点P0不稳定,地方病平衡点P*全局渐近稳定.进一步分析得到在疾病防控中可以通过增加疫苗接种比率θ来降低基本再生数R0,从而防止疾病蔓延,并进行数值模拟验证了理论结果的正确性.  相似文献   

10.
建立了一类具有变化潜伏期的水源性疾病数学模型,得到了水源性疾病流行的阈值R0(基本再生数).利用LaSalle不变集原理,通过构造新的Liapunov函数证明了平衡点的全局稳定性:当R0≤1时,系统的无病平衡点p0是全局渐近稳定的;当R0>1时,系统的地方病平衡点p*是全局渐近稳定的.最后利用数值模拟说明结论的正确性.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号