首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
等比数列求和公式为Sn=a1(11--qq n)(q≠1),有时用此公式证明不等式可简化证明过程.将数列知识与不等式知识相融合,既可培养学生思维的灵活性和创造性,又可简化思路、优化解题过程.一、直接公式法例1求证:1+21!+31!+41!+…+n1!<2(n≥2,n缀N).证明1+12!+31!+41!+…+n1!<1+12+212+123+…+21n-1=1×(11--121n)2=2-12n-1<2(n≥2,n缀N).故原不等式成立.小结本题直接运用等比数列求和公式,起到了立竿见影的效果.二、求和公式的逆用例2已知等差数列{an}和等比数列{bn}中a1=b1=a,a2=b2=b(b>a>0).求证:当n>2且n缀N时,bn>an.证明an=a+(n-1)(b-a)…  相似文献   

2.
极限与导数     
课时一 数列归纳法 基础篇 诊断练习一、选择题1.用数学归纳法证明 1n +1+1n +2 +… +12 n>132 4 时由 k到 k +1,不等式左端变化是 (   )( A)增加 12 ( k +1) 一项 .( B)增加 12 k +1和 12 k +2 二项 .( C)增加 12 k +1和 12 k +2 二项且减少 1k +1项 .( D)以上结论均错 .2 .用数学归纳法证明 1+12 +13+… +12 n - 11) ,第一步是证明不等式 (   )( A) 1<2成立 .  ( B) 1+12 <2成立 .( C) 1+12 +13<2成立 .( D) 1+12 +13+14 <2成立 .3.若命题 p( n)对 n =k成立 ,可以推出它对 n =k+2也成立 ,又若 p( n)对 n =2成立 ,则 (…  相似文献   

3.
用数学归纳法证明不等式,特别是数列不等式,是一个行之有效的方法,也是中等数学中的一个基本方法,近些年高考试题中多次出现这类考题.运用这种方法证明不等式时,往往很多同学在证k到(k+1)的过程中卡了壳,断了思路,这是一种普遍现象.下面分析一下思路受阻的几种原因及转化策略.一、从k到(k+1)添项不足在从k到(k+1)的证明过程中,如果分析不透命题结构,就会造成添项不足,证明夭折.【例1】已知Sn=1+21+13+…+1n(n∈N*),用数学归纳法证明S2n&gt;1+2n(n≥2,n∈N*).思路受阻过程:(1)当n=2时,S22=1+21+31+41=1+1123&gt;1+22,命题成立.(2)设n=k(k≥3)时不等式成立,即S2k=1+21+31+…+21k&gt;1+2k,则当n=k+1时S2k+1=1+12+31+…+21k+2k1+1&gt;1+2k+2k1+1,要证明S2k+1&gt;1+k2+1,只须证1+2k+21k+1&gt;1+k2+1,即证2k1+1&gt;21.显然,当k≥2时这是不可能的,解题思路受到阻碍.受阻原因分析:∵Sn=1+21+31+…+1n,∴S2k+1=1+21+13+…+21k+2k1+1+2k1+2+…+...  相似文献   

4.
高中代数第三册第79页有如下一道复习参考题:求证:1!+2·2!+3·3!+…+n·n!=(n+1)!-1。并作出“提示”:考虑等式n·n!=(n+1)!-n!。  相似文献   

5.
据说著名的数学家高斯,9岁时就能用巧妙的方法速算1+2+3……+100。这种方法叫倒写相加法,现在我们用这种方法来计算1+2+3+……+n。令a=1+2+3+……+n=n+(n-1)+(n-2)+……+1两式相加,得2a=(1+n)+[2+(n-1)]+[3+(n-2)]+……+(n+1)=n(n+1)∴a=12n(n+1)你一定会为高斯这种妙算拍案叫绝!惊叹之余,你是否想过还能找出什么简便方法来计算1+2+3+……+n吗?方法一:a=1+2+3+……+n=[n-(n-1)]+[n-(n-2)]+[n-(n-3)]+……+(n-0)=n·n-[(n-1)+(n-2)+(n-3)+……+0]=n2-(a-n)解方程a=n2-(a-n),得a=12n(n+1)方法二:注意到任一自然数k都能写成k=12[k(k+1)-(k-1)k]…  相似文献   

6.
数学归纳法主要用来证明一个与正整数有关的命题,它的步骤如下:1.证明当n取第一个值n0时结论正确;2.假设当n=k(k!N*,且k≥n0)时结论正确,证明当n=k 1时结论也正确.在完成了这两个步骤以后,就可以断定命题对于从n0开始的所有正整数n都正确.例1已知在各项均为正数的数列{an}中,它的前n项和Sn满足Sn=12(an a1n).试猜想数列{an}的通项公式,并用数学归纳法证明你的猜想.解析∵S1=a1=12(a1 a11),∴a21=1.∵an>0,∴a1=1.∵S2=a1 a2=12(a2 a12),即a22 2a2-1=0,又an>0,∴a2="2-1.∵S3=a1 a2 a3=1 ("2-1) a3=21(a3 a13),即a32 2"2a3-1=0,又an>0…  相似文献   

7.
现行高中《代数》下册第 12 5页第 6题有如下题目 :用数学归纳法证明 :1 12 2 132 … 1n2 <2 - 1n(n∈N,且 n≥ 2 ) .(以下称原命题 )受原命题启发 ,根据“a相似文献   

8.
在近年的高考数学试题中 ,常以数列递推式中不等式的证明作为能力型试题 .这类问题综合性强、思维容量大、能力要求高 ,是同学们感到很棘手的一类问题本文通过具体的例子说明解这类问题的几种常用方法 .一、数学归纳法例 1 已知数列 an ,对任意n∈N ,均有an >0 ,且a2 n ≤an-an + 1 ,求证 :当n≥ 2时 ,an <1n +1.证明  ( 1)当n =2时 ,a2 ≤a1 ( 1-a1 )≤ a1 +( 1-a1 )22=14 <13 =12 +1.命题成立 .( 2 )假设当n =k(k≥ 2 )时 ,命题成立 ,即有   ak <1k+1≤ 13 (k≥ 2 ) .当n =k +1时 ,由题设有ak+ 1 ≤ak-a2 k.令 f(x) =x-x2 ,则f(x) =…  相似文献   

9.
若一元二次不等式ax2+bx+c≥0恒成立,且a>0,则b2-4ac≤0.由它易得推广1:若(x-k1)2+(x-k2)2+…+(x-kn)2≥0,则(k1+k2+…+kn)2≤n(k21+k22+…+k2n),当且仅当k1=k2=…=kn时,取等号.证明:略.  相似文献   

10.
问题 试比较以下三对数的大小 :(1) 2 0 0 3 2 0 0 4与 2 0 0 42 0 0 3 ;(2 )log2 0 0 3 2 0 0 4与log2 0 0 42 0 0 5 ;(3 ) 1+ 12 0 0 32 0 0 3 与 1+ 12 0 0 42 0 0 4.赏析 (1) 第一对数的大小比较 ,可以转化为比较nn+1与 (n + 1) n(n∈N ,n≥ 3 )的大小 ,实际上 ,有结论nn+1>(n+ 1) n,其中n∈N ,n≥ 3 .证明有以下方法供参考 .证法 1 凡是与自然数有关的命题 ,都可以考虑用数学归纳法证明 ,该结论也一样 .(i)当n=3时 ,3 4 =81>43 =64成立 ;(ii)假设n =k ,k≥ 3时 ,kk+1>(k + 1) k成立 ,则当n =k+ 1时 ,有(k+ 1) k+2(k + 2 ) k+1=(k +…  相似文献   

11.
<正>在数学中,有一类与正整数有关的命题.一般说来,证明这类命题多采用数学归纳法.而在实际应用数学归纳法时,困难往往在利用n=k时命题成立的归纳假设来证明n=k+1时命题也成立这个关键步骤上.这里既有凑变技巧,也有放缩技巧.本文试图通过构造  相似文献   

12.
(本讲适合高中)4递推法对所求组合数,也可探求其中的递推规律,获取相应的递推式并加以解决,从而得到所求组合数.例10求∑nk=012kCnk k.解:设原式为f(n),则f(0)=1.由恒等式(Ⅱ),有f(n 1)=∑n 1k=0Cnk 1 k·21k=∑n 1k=0Cnk k·21k ∑nk =11Ckn- 1k·21k.将前一项分成f(n) C2nn 11·21n 1.变动后一项组合数上、下指标及求和指标,以k代原式中的k-1,得∑n 1k=1Ckn -1k·21k=∑k=n0Cnk k 1·2k1 1.故f(n 1)=f(n) C2nn 11·2n1 1 21∑k=n0Cnk k 1·21k.考虑到C2nn 12=(n (21)n! (2n) !1)!=2·n(2!(nn 11))!!=2C2nn 11,则f(n 1)=f(n) 122…  相似文献   

13.
1 在级数审敛中的应用利用指数函数 ex的幂级数展开式 ,即 ex=1+ x+ x22 !+… + xnn!+… ,| x| <+∞ (参见 [1 ] )可以判断某些通项为 n的指数函数的级数的敛散性。例 1 判别级数Σ∞n=1 e-n 的敛散性。解 根据指数函数的幂级数展开式 ,有e n =1+ n + (n ) 22 !+ n323 !+ n24!+…于是 e n >n22 4    (n=1,2 ,…… )故 e-n <2 4n2     (=1,2 ,…… )从而据正项级数比较判别法知 ,Σ∞n=1 e-n收敛例 2 判别级数 Σ∞n=1 (n1n2 + 1 -1)的敛散性。解 :因为an =n 1n2 + 1 -1=elnnn2 + 1 -1由于     limn→∞anlnnn2 + 1=limn→∞el…  相似文献   

14.
一、根据条件直接猜想例1已知数列{an}中的各项分别为182××132,…,8n(2n-1)2(2n+1)2,…,Sn是数列的前n项和,计算可得S1=98,S2=2254,S3=4489,S4=8810.根据结果猜测Sn的表达式,并用数学归纳法证明.解由S1=1-19,S2=1-215,S3=1-419,S4=1-811,猜想Sn=1-(2n1+1)2(n缀N+).证明如下:(1)当n=1时,S1=1-312=89,等式成立.(2)设当n=k(k≥1,k缀N)时,Sk=1-(2k1+1)2成立.∵an=(2n-1)82(n2n+1)2=(2n1-1)2-(2n1+1)2,∴Sk+1=Sk+ak+1=1-(2k1+1)2+(2k1+1)2-(2k1+3)2=1-[2(k+11)+1]2.由此可知,当n=k+1时,等式也成立.根据(1)、(2)可知,等式对任何n缀N+都…  相似文献   

15.
数学归纳法是一种重要的数学方法,运用数学归纳法证题的步骤是:(1)证明当n取第一个值n0(n0≥1)时,命题成立;(2)假设n=k(k∈N*且k≥n0)时命题成立,从而推出当n=k+1时,命题也成立.根据(1)、(2)可知,对一切n∈N*(n≥n0)命题成立.数学归纳法的第一步是验证命题的基础,第二步是论证命题的依据(传递性成立),两个步骤密切相关,缺一不可.需要注意的是:步骤(1)一般选取命题中最小的正整数n0作为起始值进行验证;步骤(2)推证当n=k+1时命题成立的前题,必须是当n=k时命题成立这个归纳假设,否则推理无效.作差法若命题中有关于n的连加式或数列的前n项和,则…  相似文献   

16.
命题1已知0相似文献   

17.
裂项法常在数列求和及各类化简中使用,是高考和竞赛经常考查的方法.由于裂项的形式灵活多样,技巧性高,学生难以灵活运用.为了让师生较系统地掌握裂项的方式,本人总结了几类裂项的方法,供师生们参考.一、裂成差类1.分式型:1n(n 1)(n 2)…(n m)=1m[n(n 1)…1(n m-1)-(n 1)(n 12)…(n m)]2.根式型:①1n n m=-1m(n-n m);②1(n m)n n n m=1m(1n-n1 m).3.阶乘型:①n·n!=(n 1)!-n!;②(n n1)!=n1!-(n 11)!.4.整式型:①n(n 1)=31[n(n 1)(n 2)-n(n-1)(n 1)]=n(n 1)2-n2(n 1);②ab=14[(a b)2-(a-b)2];③a=21[(b a)-(b-a)].5.三角型:①sinα·sinβ=-21…  相似文献   

18.
大家知道,利用数学归纳法来证明某些与自然数n有关的数学命题,关键是证明归纳步骤,即利用n=k命题成立这个假设条件来证明n=k+1时命题也成立。笔者现提出如何证明归纳步骤的一些技巧,供参考。一、要从n=k后条件出发“进”到n=k+1结论。例1.实数列{R_n}中,设R_1=1,R_(n+1)=1+n/R~2。求证:n~(1/2)≤R_n≤n~(1/2)+1。根据归纳法假设,当n=k时,命题成立,即 K~(1/2)≤R_k≤k~(1/2)+1 (1)要证明n=k+1时,命题也成立,即  相似文献   

19.
在学习数列与极限中,有些同学常感到求(?)[1/n~2+1/(n+1)~2+…+1/(n+n)~2],证明1+1/2!+1/3!+1/4!+…+1/n!<2之类的问题无从下手。处理这类问题,用不等式1/n~2<1/(n-1)-1/n  相似文献   

20.
第一试一、选择题(每小题6分,共36分)1.已知集合M={a1,a2,…,a2n+1},N={-22n,-22n-1,…,-2,0,2,…,22n}.若单射f:M→N满足f(a1)+f(a2)+…+f(a2n+1)=0,则这样的单射f有()个.(A)(2n+1)!C2nn(B)(2n+1)!C2nn+1(C)(2n+1)!C42nn++11(D)(2n+1)!C42nn2.已知θ1,θ2,…,θn∈0,2π,令M=(∑ni=1tanθi)(∑ni=1cotθi),N=(∑ni=1sinθi)(∑ni=1cscθi).则M与N的大小关系是().(A)M≥N(B)M≤N(C)M=N(D)不确定3.已知正整数数列{an}满足an+2=a2n+1+a2n(n≥1).若正整数m满足am=2005,则所有可能的m构成的集合是().(A){1,2}(B){1,2,3}(C){1,2,3,4}…  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号