首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
<正>在解决线段的有关问题时,如果已知条件中有线段的中点,那么可以考虑将经过中点的线段延长一倍作为辅助线,以便构造全等三角形.我们不妨把这一添加辅助线的方法称为"中点线段倍长"法.现举例如下:一、求线段的长度例1  相似文献   

2.
中点在初中数学中,有着很广泛的用途.线段的中点,把线段分成相等的两部分.几何图形中出现的中点,可以让人有丰富的联想.巧用好中点,利用中点作出中线或中位线,对解决一些题目能起到事半功倍的效果.几何图形中的出现的中点,利用中点作出辅助线,对解题起着关键性作用.以下是我总结的初中阶段关于中点运用的几个方面.一、延长中线,构造X三角形,证明三角形全等例已知△ABC,AB=8,AC=6,D为BC中点,  相似文献   

3.
贾东柱 《新疆教育》2012,(22):62-62
平面几何证明过程中经常要作辅助线,辅助线常用虚线表示。辅助线添作是解题的关键。每一道题添作的辅助线都不同,有时不止一条,但却有一定的规律,这也是解题的一个难点。添辅助线有二种情况:①按定义添辅助线:如证明二直线垂直可延长使它们,相交后证交角为90°;证线段倍半关系可倍线段取中点或半线段加倍;证角的倍半关系也可类似添辅助线。②按基本图形添辅助线:每个几何定理都有与它相对应的几何图形,我们把它叫做基本图形,添辅助线往往是具有基本图形的性质而基本图形不完整时补完整基本图形,  相似文献   

4.
众志  肖莉  草芥 《高中生》2011,(1):24-25
一、有了中点配中点,两点相连中位线 例1如图1所示.在平行四边形ABCD中.AB=2BC.∠ABC=120°,E为线段4日的中点.将△ADE沿直线DE翻折成△A’DE,使平面A’DE⊥平面BCDE.F为线段A’C的中点.  相似文献   

5.
解三角形题目时,我们常需要延长中线的一倍,构成全等三角形或平行四边形,使某些角或者线段的位置得到转移,从而使问题得到解决。一、证明线段相等例1 在△ABC中,AB=AC,E是AB的中点,  相似文献   

6.
题目 如图1,在2△ABC中,AB=AC,∠BAC=90^。,BD是AC边上的中线,AE上BD交BC于点E.求证:BE=2EC. 本题是河北省初中数学创新知识应用竞赛试题.该题求解的常规思路是添加辅助线,构造出相似三角形,用成比例线段来证明.在如何引出辅助线时,由于图中点较多,一时不知从哪下手.实际上,哪个点都可以选用,只要从选定的点引出与其它边线平行的直线,构造出相似三角形,即有证明途径.下面先看由点C引出平行线的若干方法.  相似文献   

7.
九年义务教育三年制初中几何第二册P264有这样一道复习题:过△ABC的顶点C任作一直线,与边AB及中线AD分别相交于点F和E.求证:AE∶ED=2AF∶FB.此题具有典型性和启发性.下面给出多种证法,供同学们学习时参考.证明此题的关键是应用手行线分线段成比例定理的推论.但根据已知条件所确定的图形中并没有平行线,因此需要添加辅助平行线,构成平行线分线段成比例定理的推论的基本图形、这种辅助线有如下14种作法:(1)作DG∥CF交FB于G(如图1),则G是FB的中点.所以FG由平行线分线段成比例定理的推论,得(2)取FB的中点G,…  相似文献   

8.
<正>解答平面几何题有难度,多半是由添加辅助线带来的.一些几何题的证明或求解,若由原图形分析探究,有时显得十分复杂.但通过适当的变换,即添加适当的辅助线,将原图形转换成一个完整的、特殊的、简单的新图形,问题的本质可得到充分的显示,进而通过对新图形的分析,原问题可顺利获解.本文举例说明通过倍长线段添加辅助线的几种情形,供同学们参考.一、倍长线段构造中位线例1 (2023年北京中考题)在ABC中,∠B=∠C=α(0°<α<45°),  相似文献   

9.
中点是图形中的特殊点 ,中线、中位线是三角形和梯形中的特殊线段。在解题时 ,如能运用相关性质 ,巧添辅助线 ,可使许多问题得到迅速解决。一、直接利用中点定义和中线的性质例 1 已知 :如图 1,△ ABC中 ,BD和 CE是高 ,M为 BC中点 ,P为 DE中点。求证 :PM⊥ DE。略证 :EM、DM分别为 Rt△ EBC和 Rt△ DBC斜边上的中线 ,故 EM=DM=12 BC。又因 PM为等腰△ MDE底边上的中线 ,故 PM⊥ DE。二、利用中点 ,构造中位线例 2 已知 :如图 2 ,△ ABC中 ,AD是高 ,BE是中线 ,且∠ EBC=30°。求证 :AD=BE。略证 :取 CD的中点 F,…  相似文献   

10.
在证明题中,常会出现二倍角问题,此类问题往往有一定难度,需要认真分析已知与结论之间的联系,添加适当的辅助线,从而化难为易.现举例说明. 一、作倍角的平分线例1 已知:如图1,在△ABC中,∠B=2∠A,AB=2BC.求证:△ABC是直角三角形. 证明:作∠ABC的平分线BD交AC于点D,取AB的中点E,连结DE. ∵∠ABC=2∠A,∠ABC=2∠1=2∠2,∴∠A=∠1=∠2.即△ABD为等腰三角形.∵E为AB边中点,∴DE⊥AB.∵BE=12AB=BC,∠1=∠2,BD=BD,∴△BDE≌△BDC.∴∠BCD=∠BED=90°.即△ABC为直角三角形.二、构造倍角的等角…  相似文献   

11.
<正>在初中几何试题中,我们时常遇到求解某条线段或某两条线段之和的最值问题.解决这类问题的常用方法是通过旋转变换作出恰当的辅助线,并借助全等三角形或相似三角形,将相关线段置于某一三角形中,再根据三角形的三边关系,即“三角形的任意两边之和大于第三边,三角形的任意两边之差小于第三边”来求解.下面举例说明.一、以三角形为载体1.构造全等三角形例1如图1,等边△ABC的边长为2,点D为BC边的中点,  相似文献   

12.
相似三角形是初中数学的重要内容之一,且应用广泛,下面通过典型例题归纳如何构造相似三角形,以及辅助线的作法,供大家参考.1添加平行线构造相似三角形证明线段成比例,图中没有相似形时,一般可以通过作平行线构造相似三角形.例1如图1,在△ABC中,点D是AC边上一点,(AD)/(DC)=1/2,点E是BD的中点,AE的延长线交BC于点F,求  相似文献   

13.
在解几何题时,添加辅助线的目的是构造出新的几何图形,用来沟通条件与结论之间的联系,从而使问题获得解决.添加辅助线,构造全等三角形,是常用的证(解)题技巧.现举例如下. 例1 如图1,△ABC是等腰直角三角形,AB=AC,D是斜边BC的中点,E、F分别是AB、AC边上的点,且DE⊥DF.若BE=12,CF=5,求线段EF的长.(1997年黑龙江省中考试题)  相似文献   

14.
<正>角平分线是初中几何中的一个非常重要的概念,相关问题常常需要添加辅助线才能解决.本文从“翻折”“12345模型”“倍半角模型”的角度,阐述添加辅助线的思维策略,以便准确、快速地解决有关问题.策略一、从“翻折”的角度思考角是轴对称图形,当见到角平分线时,我们可以从“翻折”的角度来添加辅助线,从而达到解决问题的目的.例1(2020年绵阳中考题)如图1,在四边形ABCD中,∠A=∠C=90°,DF∥BC,∠ABC的平分线BE交DF于点G,GH⊥DF,点E恰好为DH的中点.若AE=3,CD=2,则GH=()  相似文献   

15.
巧用中位线     
三角形、梯形中位线定理可使许多三角形、四边形或梯形的有关证明简化.当题目中含有中点条件时,添加中位线进行线段之问的转化,这是一种常用的辅助线,也是一种重要的几何转化方法.  相似文献   

16.
证明线段倍半关系是常见的几何证明.常用的方法是;作一线段等于短线段(或长线段)的2倍(或一半),然后证明这条线段等于长线段(或短线).这样的一类问题如果利用相似三角形去解,可使证明方法更简便.例1在凸ABC中,AB—ZAL?,AD平分,————‘_,__。_、___l__/BAC,P是AD的中点.求证:PC一青BD.———““—”“——““—”“’‘””””“”“”—-2——一分析若用全等三角形来证,可以将线段折半.取BD的中点E(见图1)证凸PEDgy凸ACP来完成.或过P作PE斤BD交AB于E(见图2),通过证凸APE公凸…  相似文献   

17.
与中点有关的几何问题,是初中数学的重要题型,除了线段的中点的定义,我们又学过很多与中点有关的重要结论,当问题中出现中点的条件时,除了用等量代换或倍长中线法构造全等三角形以外,还常需联想或作辅助线创造条件运用三角形的中位线、直角三角形斜边中线或等腰三角形底边中线等与中点有关的定理,常需用到的定理有:  相似文献   

18.
中点是线段上的特殊点,中线和中位线是三角形中的特殊线段,平面几何中有许多与线段有关的问题,常可通过巧取中点或作平行线,转化为“中线”或“中位线”问题,然后再运用相关的性质来解决.而对于中点的问题,着眼点不同,解法也不同. 例题如图1,在△ABC中,D为BC边的中点,延长AD到E,使  相似文献   

19.
三角形是平面几何的重要内容,是解决四边形和圆问题的基础。解有关三角形问题时,常常需要添加辅助线,现将几种常用辅助线的添置方法归纳总结如下。 一、遇到中点配中点,连点添边中位线 例1 如图1、ΔABC中,D、E分别在AB、AC上,BD=CE,BE、CD的中点分别是M、N,直线MN分别交AB、AC于点P、Q,求证:AP=AQ(杭州1985年中考试题)  相似文献   

20.
罗家平 《湖南教育》2003,(12):33-33
聚汇作用。辅助线可把已知条件聚汇在一起,为证题架通桥梁。例1.在△ABC中,AB>BC,BD是∠ABC的平分线,求证:AD>DC。分析AD与DC不是同一个三角形的两条边(如左图),无法直接比较这两条线段的长短。利用∠1=∠2的关系,在BA边上截取BE=BC,然后连结DE,则DC=DE。这样,辅助线就使求证结论中的线段汇聚到同一个△ADE中了,只要再证明∠A<∠DEA就行了。这里的辅助线就起到了聚汇已知条件的作用。显露作用。辅助线可把隐含的条件挖掘出来,凸现已知与求证之间的联系,为顺利证题铺平道路。例2.已知:如图△ABC中∠ABC=100°,∠ACB=20°…  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号