首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 453 毫秒
1.
The effect of practice on predicting elbow flexion movement time was studied. Participants (N = 18) performed 400 elbow flexion trials to a target in the horizontal plane. The trials were distributed equally over four sessions. The goal was to decrease the movement time (MT) for the same degree of accuracy. The electromyographic (EMG) activity of the biceps and triceps brachii was monitored with standard Beckman Ag/AgCl surface electrodes. The EMG measures formed two variable sets within one prediction equation. One variable set was composed of the onset of muscle activity relative to the start of movement (motor time) and the duration of muscle activity. The other variable set consisted of the mean amplitude value of the entire burst and of the first 30 ms (Q30) of activity. As the maximal speed of limb movement increased, the duration of muscle activity (motor time and EMG duration) decreased, and the magnitude of muscle activity (MAV and Q30) increased. Most of the change in the duration of muscle activity occurred in Session 1, while the magnitude of muscle activity continued to increase until Session 3. Multiple regression analysis revealed a cooperative strategy between the magnitude and duration of muscle activity. Early in learning, participants adjusted the magnitude of muscle activity to increase limb movement speed. As practice continued, alterations in the duration of muscle activity became more important, while the magnitude changes were less involved. Late in learning, both dimensions of muscle activity were used to decrease MT. We suggest that the interplay between the magnitude and duration of muscle activity may be due to: (a) cognitive factors related to the division of attention in a motor skill, (b) an increase in the frequency of motor unit firing that affects both dimensions of muscle activity, or (c) some combination of (a) and (b).  相似文献   

2.
Abstract

Maximally fast, self-terminated, elbow flexion movements were performed by 10 male and 10 female college-aged subjects to assess potential gender-related differences in kinematics and the triphasic electromyographic (EMG) pattern. The subjects were instructed to move their forearms as fast as possible through 90° of elbow flexion range of motion and stop as sharply as possible at the terminal point. An electromagnet, set to 0, 40, and 70% of each subject's maximal isometric torque, provided resistance to movement initiation and resulted in quick release movements. Surface EMG was collected from the biceps b. and triceps b. muscles. Results indicated that the males had faster movements and accelerations under all conditions. EMG records indicated that the males had faster rates of EMG rise, particularly in the triceps b., and more tightly coupled reciprocal activation. The quick release afforded faster accelerations for both groups, yet only the males moved faster throughout the full range of motion. Following the quick release, the males differed from the females by increasing the triceps b. EMG amplitude. Hence, the males were able to shorten movement time in quick release movements by increasing triceps b. activation and, thus, braking ability. These results suggest that the females were more neurally constrained than the males with respect to rapid EMG activation of the triceps b., resulting in limits in the braking process.  相似文献   

3.
Distance and location assimilation effects in rapid bimanual movement   总被引:2,自引:0,他引:2  
When subjects make simultaneous aiming movements of the upper limbs over different distances, assimilation effects are shown; the shorter distance limb overshoots when paired with a longer distance limb. However, it is not known whether assimilation effects are due to variations in distance per se or to variations in target location. To separate the possible influences of distance and location, 60 subjects made rapid bimanual aiming movements in one of four conditions. The two different-distance groups made a 20 degrees movement in the left hand and a 60 degrees movement in the right hand to either the same or different target locations. The comparison groups moved 20 degrees in each limb. Somewhat surprisingly, spatial assimilations were greater when moving different distances to the same, rather than different, target locations, which suggests interlimb differences in distance mediate assimilation effects rather than target location. Temporal assimilations were greater when distance and location were varied, but the assimilations were not related to interlimb differences in velocity, as predicted by Marteniuk and MacKenzie (1980).  相似文献   

4.
Rapid, goal-directed elbow flexion movements were examined under interacting conditions of inertial loading and resistance to movement initiation. The resistance ceased when movement began, resulting in quick release movements. Inertial load slowed the movement and lengthened the agonist and antagonist electromyographic (EMG) burst durations. The quick release resulted in larger accelerations but only minimal changes in peak velocity. Most aspects of the triphasic EMG pattern were little affected by the quick release, but the build up of agonist EMG and the corresponding rate of static force development differed markedly between load and quick release conditions. These and other data suggest that the specific pattern of agonist muscle activation is set according to neuromuscular constraints of the antagonist muscle and the expectation of movement dynamics.  相似文献   

5.
Literature examining the recruitment order of motor units during lengthening (eccentric) contractions was reviewed to determine if fast-twitch motor units can be active while lower threshold slow-twitch motor units are not active. Studies utilizing surface electromyogram (EMG) amplitude, single motor unit activity, spike amplitude-frequency analyses, EMG power spectrum, mechanomyographic, and phosphocreatine-to-creatine ratio (PCr/Cr) techniques were reviewed. Only single motor unit and PCr/Cr data were found to be suitable to address the goals of this review. Nine of ten single motor unit studies, examining joint movement velocities up to 225 degrees/s and forces up to 53% of a maximum voluntary contraction, found that the size principle of motor unit recruitment applied during lengthening contractions. Deviation from the size principle was demonstrated by one study examining movements within a small range of low velocities and modest forces, although other studies examining similar low forces and lengthening velocities reported size-ordered recruitment. The PCr/Cr data demonstrated the activation of all fibre types in lengthening maximal contractions. Most evidence indicates that for lengthening contractions of a wide range of efforts and speeds, fast-twitch muscle fibres cannot be selectively recruited without activity of the slow-twitch fibres of the same muscle.  相似文献   

6.
Abstract

Rapid, goal-directed elbow flexion movements were examined under interacting conditions of inertial loading and resistance to movement initiation. The resistance ceased when movement began, resulting in quick release movements. Inertial load slowed the movement and lengthened the agonist and antagonist electromyographic (EMG) burst durations. The quick release resulted in larger accelerations but only minimal changes in peak velocity. Most aspects of the triphasic EMG pattern were little affected by the quick release, but the build up of agonist EMG and the corresponding rate of static force development differed markedly between load and quick release conditions. These and other data suggest that the specific pattern of agonist muscle activation is set according to neuromuscular constraints of the antagonist muscle and the expectation of movement dynamics.  相似文献   

7.
Literature examining the recruitment order of motor units during lengthening (eccentric) contractions was reviewed to determine if fast-twitch motor units can be active while lower threshold slow-twitch motor units are not active. Studies utilizing surface electromyogram (EMG) amplitude, single motor unit activity, spike amplitude–frequency analyses, EMG power spectrum, mechanomyographic, and phosphocreatine-to-creatine ratio (PCr/Cr) techniques were reviewed. Only single motor unit and PCr/Cr data were found to be suitable to address the goals of this review. Nine of ten single motor unit studies, examining joint movement velocities up to 225°/s and forces up to 53% of a maximum voluntary contraction, found that the size principle of motor unit recruitment applied during lengthening contractions. Deviation from the size principle was demonstrated by one study examining movements within a small range of low velocities and modest forces, although other studies examining similar low forces and lengthening velocities reported size-ordered recruitment. The PCr/Cr data demonstrated the activation of all fibre types in lengthening maximal contractions. Most evidence indicates that for lengthening contractions of a wide range of efforts and speeds, fast-twitch muscle fibres cannot be selectively recruited without activity of the slow-twitch fibres of the same muscle.  相似文献   

8.
Abstract

When subjects make simultaneous aiming movements of the upper limbs over different distances, assimilation effects are shown; the shorter distance limb overshoots when paired with a longer distance limb. However, it is not known whether assimilation effects are due to variations in distance per se or to variations in target location. To separate the possible influences of distance and location, 60 subjects made rapid bimanual aiming movements in one of four conditions. The two different-distance groups made a 20° movement in the left hand and a 60° movement in the right hand to either the same or different target locations. The comparison groups moved 20° in each limb. Somewhat surprisingly, spatial assimilations were greater when moving different distances to the same, rather than different, target locations, which suggests interlimb differences in distance mediate assimilation effects rather than target location. Temporal assimilations were greater when distance and location were varied, but the assimilations were not related to interlimb differences in velocity, as predicted by Marteniuk and MacKenzie (1980).  相似文献   

9.
According to closed-loop accounts of motor control, movement errors are detected by comparing sensory feedback to an acquired reference state. Differences between the reference state and the movement-produced feedback results in an error signal that serves as a basis for a correction. The main question addressed in the current study was how distance, movement time, and velocity influence both spatial or temporal error detection. Forty college-aged participants (30 women and 10 men) performed rapid aiming movements over 30 degrees or 50 degrees in either 210 ms or 350 ms without vision. The participants verbally estimated the distance moved and the movement time during acquisition before knowledge of results was given and during an immediate retention test without knowledge of results. Spatial and temporal objective-subjective correlations were greater in the 210-ms condition compared to the 350-ms condition, but were not related to movement velocity.  相似文献   

10.
The purpose of this study was to investigate whether using different focus affects electromyographic (EMG) amplitude and contraction duration during bench press performed at explosive and controlled speeds. Eighteen young male individuals were familiarized with the procedure and performed the one-maximum repetition (1RM) test in the first session. In the second session, participants performed the bench press exercise at 50% of the 1RM with 3 different attentional focuses (regular focus on moving the load vs contracting the pectoralis vs contracting the triceps) at 2 speed conditions (controlled vs maximal speed). During the controlled speed condition, focusing on using either the pectoralis or the triceps muscles increased pectoralis normalized EMG (nEMG) by 6% (95% CI 3–8%; p = 0.0001) and 4% nEMG (95% CI 1–7%; p = 0.0096), respectively, compared with the regular focus condition. Triceps activity was increased by 4% nEMG (95% CI 0–7%; p = 0.0308) at the controlled speed condition during the triceps focus. During the explosive speed condition, the use of different focuses had no effect. The different attentional focus resulted in comparable contraction duration for the measured muscles when the exercise was performed explosively. Using internal focus to increase EMG amplitude seems to function only during conditions of controlled speed.  相似文献   

11.
The coronal and sagittal plane leg movements of 24 experienced male cyclists were assessed using video analysis while cycling on a Kingcycle windload simulator. The cyclists were grouped into those with a history of injury and an asymptomatic group on the basis of self-reported injury status. The ages, cycling experience, competition distances and competition speeds of the two groups were compared using Student's t-test. No significant differences (P < 0.05) were found for any of these variables. The maximum and minimum shank adduction, shank adduction velocities, knee flexion and ankle dorsiflexion values were also compared using Student's t-test. Significant differences were found at the point of maximum adduction (1.9 degrees; P = 0.019) and minimum dorsiflexion (4.9 degrees; P = 0.014). These differences indicated more dorsiflexion and greater abduction on the part of the symptomatic cyclists, supporting previous research that found that cyclists with a history of injury differ from those without a history of injury in the coronal plane leg movement patterns they adopt. Also, the most extreme medial position of the knee relative to the ankle occurred during knee extension. This supports the potential injury mechanism proposed by Francis (1986), which had previously only been examined using coronal plane kinematics.  相似文献   

12.
Abstract

The purpose of this study was to investigate the discrepancy between the finding that when two hands make movements to targets of different distances, they have the same movement time (Kelso, Southard & Goodman, 1979a, b) and the finding that they have different movement times (Marteniuk & MacKenzie, 1980). The present experiment shows that when the ratio of the distance traveled by the two hands is 4:1, they do not take the same time. The hand moving the shorter distance lakes less time, although it takes more lime than when moving alone or when moving the same distance as the other hand. This finding is highlighted when individual data are examined. It appears that there is no difference between using homologous or nonhomologous muscle groups.  相似文献   

13.
The purpose of this study was to determine how the manipulation of movement duration affects components of fractionated reaction time and presumably motor programming. Twelve subjects, in a simple reaction time paradigm, responded to an auditory signal by executing an elbow flexion movement in the sagittal plane through a range of motion of 100° in 150, 300, 600 and 1200 ms. Results indicated no changes in motor time but small increments in premotor and reaction time through the 600 ms condition. At 1200 ms, reaction time increased faster than premotor time, and this appeared to be predominantly a consequence of an increment in motor time. These data were interpreted to be supportive of the notion that movement duration is related to response complexity and the time required for motor programming.  相似文献   

14.
定距离原地投篮的弧线轨迹主要取决于出手速度和出手角度。为了探究优秀青年男子运动员不同距离原地投篮命中率的各影响因素,采用平面定机高速摄影和运动技术解析法,采集12名U16中国国家男子篮球运动员罚篮、中投和三分投球中篮过程投篮手臂的腕、肘、肩、膝等相关关节的线速度和角速度等参数,运用关联度和回归分析(Matlab2018a)探究规律。发现8项因素对原地投篮对命中率有不同程度的影响,其中,球初始高度、球离手高度、腕关节速度和膝关节速度4项因素,通过投篮角度和投篮速度对不同距离投篮中命中率的影响最大。  相似文献   

15.
Biomechanical analyses using synchronized tools [electromyography (EMG), motion capture, force sensors, force platform, and digital camera] are classically performed in a laboratory environment that could influence the performance. We present a system for studying the running sprint start that synchronizes motion capture, EMG, and ground reaction force data. To maximize motion capture (Vicon 612 with six cameras), a special dim environment was created in the stadium. "Classical" tools were combined with "purpose-built" tools intended to analyse the different aspects of movement. For example, a synchronization system was built to create a common time-base for all data recordings and a portable EMG system was synchronized by a cable that was "disconnected" by the athlete's movement out of the blocks. This disconnection represented an independent event recorded by different tools. A "gap" was measured for some sprint start events between kinetic and kinematic (motion capture) data. Calibration results, measurements of time "gap", and duration of the independent event were used to validate the accuracy of motion capture and the synchronization system. The results validate the entire experimental set-up and suggest adjustment values for motion capture data. This environment can be used to study other movements and can easily be applied to several sports.  相似文献   

16.
The aim of this study was to examine the influence of level of skill and swimming speed on inter-limb coordination of freestyle swimming movements. Five elite (2 males, 3 females; age 18.9+/-1.0 years, height 1.71+/-0.04 m, body mass 62.1+/-7.0 kg) and seven novice (age 22.0+/-2.0 years, height 1.77+/-0.04 m, body mass 74.8+/-9.0 kg) swimmers swam a sprint and a self-paced 25 m freestyle trial. The swimming trials were recorded by four digital cameras operating at 50 Hz. The digitized frames underwent a three-dimensional direct linear transformation to yield the three-dimensional endpoint kinematic trajectories. The spatio-temporal relationship between the upper limbs was quantified by means of the peak amplitude and time lag of the cross-correlation function between the right and left arm's endpoint trajectories. A strong anti-phase coupling between the two arms, as confirmed by peak amplitudes greater than 0.8, was noted for both groups and swimming speeds. Significantly higher (P<0.05) peak amplitudes were observed for the sprint compared with self-paced swimming. No significant differences in the strength of inter-limb coupling were noted between the elite and novice swimmers (P>0.05). Time lags were very close to 0 ms and did not differ between groups or swimming speeds. We conclude that in freestyle swimming, the intrinsic anti-phase (180 degrees phase difference) inter-limb relationship is strongly preserved despite the physically powerful environmental influence of the water and this "preferred" pattern is not affected by level of skill. In contrast, increasing movement speed results in stronger inter-limb coupling that is closer to the anti-phase inter-limb relationship.  相似文献   

17.
Using plain white and chequered footballs, we evaluated observers’ sensitivity to rotation direction and the effects of ball texture on interceptive behaviour. Experiment 1 demonstrated that the maximal distance at which observers (= 8) could perceive the direction of ball rotation decreased when rotation frequency increased from 5 to 11 Hz. Detection threshold distances were nevertheless always larger for the chequered (decreasing from 47 to 28 m) than for the white (decreasing from 15 to 11 m) ball. In Experiment 2, participants (n = 7) moved laterally along a goal line to intercept the two balls launched with or without ±4.3 Hz sidespin from a 30-m distance. The chequered ball gave rise to shorter movement initiation times when trajectories curved outward (±6 m arrival positions) or did not curve (±2 m arrival positions). Inward curving trajectories, arriving at the same ±2 m distances from the participants as the non-curving trajectories, evoked initial movements in the wrong direction for both ball types, but the amplitude and duration of these reversal movements were attenuated for the chequered ball. We conclude that the early detection of rotation permitted by the chequered ball allowed modulation of interception behaviour without changing its qualitative characteristics.  相似文献   

18.
Abstract

The purpose of this research was to investigate the modifications in the control of the biceps brachii (agonist) and triceps brachii (antagonist) muscles during the learning of two elbow flexion tasks in sixteen college-age women. A positioning and a coincidence task were each performed at 40° and 200° per second angular velocity while bipolar surface electrodes recorded the electromyographic (EMG) activity of the muscles involved. Data on the EMG activity, angular kinematics, and timing and angular displacement error were quantified and subjected to statistical analyses. The results of the error analyses indicated that subjects did learn the various tasks over the 120 trials. Because there were no significant changes in the angular velocity patterns over trials, the EMG activity modifications are suggested to reflect differences in the control of the muscles monitored during the movements. In addition, EMG activity pattern modifications which occurred in discrete portions of the movements in both muscles indicate an increased cocontraction of the opposing muscles as subjects learned the tasks. Temporal periods in which modifications were observed appear to represent the critical periods in each movement task.  相似文献   

19.
“二起脚”是陈式太极拳的腾空类动作。本研究用两台高速摄相机从正、侧面以60格/秒的速度进行了同步摄相,其后用DLT法对影片进行立体解析,获得人体完成动作时人体总重心位移、速度等一系列运动学参数。此外,还同步测定了踏跳阶段的三维支撑反作用力和18处肌肉的肌电图,对采样数据进行A/D变换,计算了动作各阶段和全过程的肌电积分值。根据测试结果从运动学、动力学和肌肉发力的角度对动作进行了生物力学分析。  相似文献   

20.
In the presented research, a kinematic and electromyographic study was performed on one world-class male elite handbiker (UCI class H3.2). Activity of 14 muscles of the upper body were measured with surface electromyography (EMG), and a motion analysis of the athlete’s movement was performed concurrently for different backrest positions, crank lengths, and crank heights at three power levels (130, 160 and 190 W). Kinematics in terms of elbow and wrist angle, muscular on-off timing, EMG amplitudes, and integrated EMG were calculated. Results showed that little changes occurred for kinematic parameters and changes in position led to a shift in muscular timing. However, no indication for immediate improvement to the athlete’s preferred original position could be observed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号