首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
高中《代数》第一册P181例3: 例3 设tgα、tgβ是一元二次方程ax~2+bx+c=0(b≠0)的两个根,求ctg(α+β)的值。解:在ax~2+bx+c=0中,a≠0,由一元二次方程根与系数之关系,得tgα+tgβ=-b/a,tgα·tgβ=c/a。而ctg(α+β)=1/tg(α+β)=(1-tgα·tgβ)/(tgα+tgβ)(*)由题设b≠0。故tgα+tgβ≠0,代入  相似文献   

2.
当a+b+c=0时     
我们知道,一元二次方程ax~2+bx+c=0(a≠0)的实数根,在b~2-4ac≥0时,可由求根公式求得。 现在,我们来探究一个问题,当a+b+c=0时,一元二次方程ax~2+bx+c=0(a≠0)的根有什么特点? 探究 ∵ a+b+c=0,∴b=-(a+c),∴ 原方程可化为ax~2-(a+c)x+c=0,即 (ax~2-ax)-(cx-c)=0. ∴ ax(x-1)-c(x-1)=0. ∴(x-1)(ax-c)=0. ∴ X_1=1,X_2=c/a。  相似文献   

3.
本文主要是总结一下现行统编教材中涉及到的最值问题的求法,以及在应用这些方法时要注意的问题。一、一元二次函数的最值 1.y=ax~2 bx c(a≠0,x∈R)当x=-b/2a时,y(最值)=(4ac-b~2)/4a 2.y=ax~2 bx c(a≠O,x∈[α,β])(1)-b/2a∈[α,β]时,y_(max)=max{f(-b/2a),f(α),f(β)}  相似文献   

4.
我们知道,对于实系数一元二次方程ax~2 bx c=0(a、b、c∈R,a≠0),可用△=b~2-4ac与0的关系来判断有无实数根,并且可用求根公式求此方程的根,那么对于复系数一元二次方程。ax~2 bx c=0(a、b、c∈C,a≠o)怎样求根,怎样判断实根的情况? 1.求根公式 命题(一):方程ax~2 bx c=0(a、b、c∈C,a≠0)的求根公式是:x=-b [(b~2—4ac)的平方根]/(2a) .  相似文献   

5.
设α、β为一元二次方程ax~2 bx c=0(a≠0)的二根,利用韦达定理和恒等式α~2 β~2=(α β)~2-2αβ可求得α~2 β~2的值,进而解决一些问题。类似的恒等式还有(α-β)~2=(α β)~2-4αβ,α~3 β~3=(α β)[(α β)~2-3αβ]等。一、求代数式的值例1 a为实数,方程x~2 2x a=0的两根为α,β,求|α| |β|的值解:α β=-2,α·β=a,当△=4-4a≥0,即a≤1时,α,β为实数,  相似文献   

6.
大家知道,一元二次方程ax~2 bx c=0(a≠0)的两根为: x_1=-b Δ~(1/2)/2a,x_2=-b-Δ~(1/2)/2a  相似文献   

7.
解一元二次方程及判断一元二次方程是否有解,是一元二次方程一章的两个重点,除要掌握基本方法外,适当的掌握一些常见的技巧可以提高学习的效率。一、解法选择技巧解一元二次方程的基本方法有:直接开平方法、配方法、因式分解法、公式法,如何快速选择方法,有一定的技巧.对于一元二次方程一般式ax~2+bx+c=0(a≠0,a、b、c是常数),其中a≠0,但b、c可以为0,因此方程ax~2=0,ax~2+bx=0,ax~2+c=0,这些形式的方程因为缺项,也叫不完全的一元二次方程,是一元二次方程的特殊形式,因此解法也就会有不同的技巧.对于一元二次方程ax~2+bx+c=0中的常数项c=  相似文献   

8.
命题若a,b,c,p∈R,a b c=p,则存在k∈R,使b=-(k 1)a,c=ka p。而且也存在k’∈ R,使c=-(k’ 1)a,b=k’a p。证明由a b c=p得a b (c-p)=0,以a、b、(c-p)为二次项、一次项的系数和常数项,作一元二次方程 ax~2 bx (c-p)=0(假定a≠0),显然方程有根为1,(因为a b (c-p)=0),若另一根为k,(k∈R)由根与系数的关系得-b/a=k 1,即 b=-(k 1)a,(c-p)/a=1·k,得c=ka p。再作二次方程ax~2 cx (b-p)=0,其一根为1 ,若另一根为k’,则有  相似文献   

9.
二次函数y=ax~2+bx+c(a≠0),当函数值y=0时,ax~2+bx+c=0就是一个一元二次方程.换句话说,一元二次方程的根即是二次函数.y=ax~2十bx+c的函数值为零时相应的自变量的值.因此,我们可以这样求解一元二次方程ax~2+bx+c=0(a≠0):  相似文献   

10.
如果两个数α、β满足如下关系:α β=-b/a,αβ=c/a,那么这两个数α、β是方程ax^2 bx c=0(a≠0)的根,我们知道,这便是韦达定理的逆定理.下面举例说明它在三角中的应用。  相似文献   

11.
中学阶段研究的二次函数f(x)=ax~2 bx c,其中,a、b、c∈R,a≠0,其定义域为(-∞, ∞),它是初等函数。 二次函数有其重要特征,它有唯一的对称轴,x=-b/2a,唯一顶点(-b/2a,4ac-b~2/4a);当a>0时,f(x)=ax~2 bx c是以x=-b/2a为界,函数在[-b/2a,-∞)上为减函数,在  相似文献   

12.
由一元二次方程根与系数的关系知道,二次三项式ax~2 bx c=a(x-x_1)(x-x_2)(?)x_1 x_2=-b/a,x_1x_2=c/a。由此可对“十字相乘法”作如下改进: 作变换ax~2 bx c=1/a[(ax)~2 b(ax) ac]。令ax=y,则ax~2 bx c=1/a(y~2 by ac)。若有x_1、x_2,使x_1x_2=ac,x_1 x_2=-b,则ax~2 bx c=1/a(y-x_1)(y=x_2)=1/a(ax-x_1)(ax-x_2),于是有定理对于二次三项式ax~2 bx c,若能找到x_1、x_2,使得ac=x_1x_2,x_1 x_2=-b,那末,ax~2 bx c  相似文献   

13.
实系数一元二次方程ax~2+bx+c=0(a≠0)有性质: (1)若a+b+c=0,则方程的两根为x_1=1,x_2=c/a;反之,若一根为1,则a+b+c=0。  相似文献   

14.
设一元二次方程ax2 bx c=0(a≠0)(1),其实根为x1,x2.对应的二次函数为f(x)=ax2 bx c(a≠0),则f(0)=c.1一元二次方程根的基本分布———零分布所谓一元二次方程根的零分布,指的是  相似文献   

15.
对于一元二次方程 ax~2+bx+c=0, (a≠0) (*) 韦达定理及其逆定理又可以叙述成下述形式: 命题Ⅰ方程(*)的两根之和为常数p,两根之积为常数q的充要条件是 p=-b/a,q=c/a。本文从命题Ⅰ出发,推出以下一组很有用的命题。命题Ⅱ方程(*)的两根互为相反数的充要条件是b=0。  相似文献   

16.
如果两个数α、β满足如下关系:α β=-b/a,αβ=c/a,那么这两个数α、β是方程ax^2 bx c=O(a≠0)的根.这便是韦达定理的逆定理.下面举例说明它在平面三角中的应用.  相似文献   

17.
一元二次方程的根与系数之间存在着下列关系:如果ax~2+bx+c=0(a≠0)的两个根是x_1、x_2,那么x_1+x_2=-b/a,x_1·x_2=c/a.这就是有的参考书所讲的“韦达定理”.  相似文献   

18.
1根与系数的关系对于一元二次方程ax~2 bx c=0(a≠0)的韦达定理x_1 x_2=-b/a、x_1x_2=c/a (x_1,x_2是方程的两个根)是大家都熟悉的,那么两根之比λ和两根之差d与系数的关系又是怎样的呢?  相似文献   

19.
<正>如果一元二次方程ax2+bx+c=0(a≠0)有两个实数根x_1和x_2,那么x_1+x_2=-b/a,x_1x_2=c/a,这就是著名的韦达定理.现行义务教育初中数学教材中的证法是利用一元二次方程ax2+bx+c=0(a≠0)有两个实数根x_1和x_2,那么x_1+x_2=-b/a,x_1x_2=c/a,这就是著名的韦达定理.现行义务教育初中数学教材中的证法是利用一元二次方程ax2+bx+c=0的求根公式先求出它的两个根,然后分别计算这两根之和与两根之积.笔者在文[1]中不借助于一元二次方程的求根公式给出了韦达定理的三种代数证法,本文再给出韦达定理  相似文献   

20.
我们知道:若x1是方程ax2+bx+c=0(a≠0)的根,则ax12+bx1+c=0,反之若ax12+bx1+c=0(a≠0),则x1是方程ax2+bx+c=0的一个根,活用方程根的定义的正、反两方面知识,进行解题是一种重要的方法,现举例说明·一、正用方程根的定义例1(“祖冲之杯”数学邀请赛题)已知关于x的方程ax2+bx+c=0(a≠0)的两根之和是m,两根平方和是n,求3an2+c3bm的值·解:设方程的二根是α、β,则aα2+bα+c=0,aβ2+bβ+c=0·两式相加,得a(α2+β2)+b(α+β)+2c=0,即an+bm+2c=0,所以2c=-(an+bm),所以3an2+c3bm=-31·例2(河北省初中数学竞赛题)求作一元二次方程,使它的根是方程x…  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号