首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
在复习“三角函数”时,老师讲了一道三角题已知sin3α/sin(π/6-3α)=cos3α/cos(π/6-3α)=2~(1/3)(α≠kπ/4,且k∈Z),求tan2α.老师给出的解答:由已知可得  相似文献   

2.
三角学中有下面几个公式: sinαsin(π/3+α)sin(π/3-α)=1/4sin3α;(1) cosαcos(π/3+α)cos(π/3-α)=1/4cos3α;(2) tgαtg(π/3+α)tg(π/3-α)=tg3α;(3) ctgαctg(π/3+α)ctg(π/3-α)=ctg3α。(4) 这几个公式的证明是比较简单的。现对公式(1)证明如下: ∵ sinαsin(π/3+α)sin(π/3-α)=sinα[-1/2(cos(2π/3)-cos2α)]=sinα(1/4+1/2cos2α)  相似文献   

3.
一些三角问题转化为代数问题,运用韦达定理逆定理构造方程来解有时是很简便的。兹举例说明之。 [例1] 已知sinα·cosα=-(3~(1/2))/4,且(π/2)<α<3π/4,求sinα和cosα的值。解:∵(sinα+cosα)~2=sin~2α+cos~2α+2sinα cosα=1-(3~(1/2))/2,(又(π/2)<α<(3π/4)), ∴sinα+cosα>0。  相似文献   

4.
2004年湖南省自行命题的数学高考(理)17题“已知sin(π/4 2α)sin(π/4-2α)=1/4,α∈(π/4,π/2),求2sin^2α tanα-cotα-1的值”是三角函数中典型的给值求值问题,考查了学生运用公式进行三角变换、化简、求值的基本运算能力。  相似文献   

5.
第1点三角函数的概念()必做1如图1,以Ox为始边作角α与β(0<β<α<π),它们的终边分别与单位圆相交于点P,Q,已知点P的坐标为(-3/5,4/5)(1)求(sin2α+cos2α+1)/(1+tanα)的值;  相似文献   

6.
一、“给值求值”时将“待求角”用“条件角”表示例1 已知cos(α-β)=-4/5,cos(α+β)=4/5,且α-β∈(π/2,π),α+β∈(3π/1,2π),求cos2α. 解:由已知求得sin(α-β)=3/5,sin(α+β)=-3/5.又2α=(α-β)+(α+β),所以cos2α=cos(α-β)cos(α+β)-sin(α-β)sin(α+β)·代入已知数据得cos2α=-7/25. 练一练已知sin(π/4-α)=5/13(0<α<π/4),求cos2α/(?)的值.  相似文献   

7.
不少学生对诱导公式背得“滚瓜烂熟”,但却不能“倒背如流”,也就是不能“逆用”诱导公式。究其原因,还是不能灵活运用诱导公式。所谓诱导公式的“逆运用”,顾名思义,就是把诱导公式反回去应用。例如,能根据需要把sinα写成形如sin(π-α),-sin(π+α),-sin(2π-α),sin(2π+α),-sin(-α),cos(π/2-α),-cos(π/2+α),-cos(3π/2-α),cos(3π/2+α)等形式。在反三角函数的讨论及复数的研究中都需要大量“逆用”诱导公式。例1 求下列各式的值。 (1) arc sin(sin4) (2) arc ctg(ctg5) 对本题只需“逆用”恰当的诱导公式把自变量化  相似文献   

8.
在三角中,求角的大小,通常是通过求这个角的一个三角函数值来解决.根据三角函数的周期性,一个三角函数值对应无数个角,因此用三角函数值确定角的大小的核心问题是确定角存在的范围.例1:已知α∈(0,π),β∈(0,π),cosα=4/5,tgβ=-7,求α+β.分析因为已知条件中有taβ的值,所以用 tg(α+β)确定α+β的大小比较简单.  相似文献   

9.
本刊91年第1期《三角函数式的恒等变换与应用》一文的一例及其解答如下: 例12 已知(tg(α+β-γ))/(tg(α-β+γ))=tgγ/tgβ,求证sin2α+sin2β+sin2γ=0 证明:把已知化为 (sin(α+β-γ)cos(α+β-γ))/(cos(α+β-γ)sin(α+β-γ))=sinγcosβ/cosγsinβ由合分比定理,化简得 (sin2α)/(sin2(β-γ))=(sin(γ+β))/(sin(γ-β))  相似文献   

10.
反证法在代数、几何证题中的地位与作用,已广为人知。但作为数学的一个分支——三角,由于它有公式繁多、恒等变形十分灵活等特点,因此在三角证题中,学生往往只知道套用公式寻求直接证法,而易于忽视反证法在三角证题中的应用。一、证明等式或证明不等式问题。例1 设α、β为锐角,且sin~2α+sin~2β=sin(α+β),求证:α+β=π/2(1983年全俄中学生数学奥林匹克试题)。证明要证α+β=π/2,只须证α+β>π/2要α+β<π/2都不能成立。为此,将已知等式变形成: sinα(sinα-cosβ)=sinβ(cosα-sinβ) (*) 假若α+β>π/2,则α>π/2-β,于是sinα>cosβ,cosα相似文献   

11.
在解题时,可能会遇到(有时需构造)各项次数相同的式子,我们称之为齐次式,下面举例说明齐次式的应用. 1.求三角函数值 例1 已知6sin2α sinαcosα-2cos2α=0,α∈(π/2,π),求sin(2α π/3)的值. (04年湖北卷) 分析 方程左端为齐次式,由已知条件可知 cosα≠0,则α≠π/2,所以 原方程可化为 6tan2α tanα-2=0,所以 (3tanα 2)(2tanα-1)=0.  相似文献   

12.
公式“sin2α+cos2α=1”是高中三角函数问题中一个十分重要的公式,它是同角三角函数基本关系式之一,具有十分广泛的应用.在解决三角问题时,如能活用该公式,充分挖掘其潜在功能,往往可以推陈出新,给人以耳目一新的感觉.一、三角函数式的化简例1化简1-sin6α-cos6αsin2α-sin4α.解1-sin6α-cos6αsin2α-sin4α=1sin2αcos2α-sin2α+cos2αsin2αcos2α×(sin2α+cos2α)2-3sin2αcos2αsin2αcos2α=1-(1-3sin2αcos2α)sin2αcos2α=3.二、用公式求值例2已知sinθ+cosθ=15,θ(0,π),则cotθ=_____.解∵sin2θ+cos2θ=1,∴(sinθ+cos…  相似文献   

13.
构造法是数学中常用的也是重要的方法之一.本文将通过构造辅助方程求某些三角函数式的值,而这些三角函数的值都是不易直接求解的。例1 求sin18°的值. 解:设α=18°,那么3α=90°-2α,从而sin3α=cos2α,即 3sinα-4sin~3α=1-2sin~2α, 4sin~3α-2sin~2α-3sinα 1=O.这说明sin18°是方程4x~3-2x~2-3x 1=0的一个根. ∵ 4x~3-2x~2-3x 1=(x-1)(4x~2 2x -1). ∴原方程的根为1,(-1±5~(1/5))/4,于是sin18°=(-1 5~(1/5))/4. 例2 求 cosπ/7-cos2π/7 co3π/7的值。解:设α=π/7,并设原式为y,那么y=cosα cos3α cos5α,从而  相似文献   

14.
在直角坐标系xoy中,各象限的角平分线连同轴、y轴共八条射线,它们把直角坐标系分成八个区域,在各射线上标上相应的sinα+cosα的值,就可以很方便地判断出α的范围。如上图建立坐标系,设sinα+cosα=x,且α∈〔02π〕,A(1,1).〔结论1〕若1相似文献   

15.
(友情提醒:时间120分,做完后参照答案给自己评分,总分150分)一、选择题(每小题只有1个选项正确,每小题5分,共50分)1.若tanα<0,且sinα>cosα,则α在().A第一象限;B第二象限;C第三象限;D第四象限2.下列函数中,周期为π/2的偶函数是().Ay=sin4x;By=cos2x;Cy=cos22x-sin22x;Dy=tan2x3.函数y=2sin(π/6-2x)(x∈[0,π])为增函数的区间是().A[0,π/3];B[π/12,7π/12];C[π/3,5π/6];D[5π/6,π]4.当0相似文献   

16.
一般说来,与三角函数有关的综合题主要出现在一元二次方程中,由于它综合了三角、方程、几何等方面的知识,因此,解答这类问题常常要用到以下三方面的知识: 1.同一个解的三角函数的关系式,即sin2α cos2α=1,tgα·ctgα=1,tgα=sinα/cosα,ctgα=cosα/sinα;  相似文献   

17.
三角恒等变形,公式繁多,技巧性强,不易熟练掌握.但如果在“变”字上下功夫,常可抓住关键,找到解题途径.一、变角对已知角进行和、差、倍、半角等各种形式的合理变换,有利于某些三角函数化简求值.例1(1997年高考题)sin7°+cos15°sin8°cos7°+sin15°sin8°的值为.解:由7°=15°-8°,利用差角正弦和余弦公式,化简得原式=sin15°cos15°=1-cos30°sin30°=2-3.练习(1992年高考题)已知π2<β<α<3π4,cos(α-β)=1213,sin(α+β)=-35,求sin2α的值.二、变项对于某些三角函数化简,求值问题,若添项或拆项等,则往往能一举成功.例2(1994年高考题)…  相似文献   

18.
准确掌握概念,是三角复习中重要的一环。学生在这方面存在的问题很多。如忽视任意角的概念,从sinx=1/2仅求得x=30°;忽视三角函数周期的概念,对于函数y=3 sin(2 x-π/2)-1,错误判断当x=π/2 2 kπ(k∈Z)时有最大值2;混淆锐角与第一象限的角的概念;忽略三角函数值本身的符号与算术根的概念;错误运用三角函数的性质判断tg310°与tg260°的大小,等等。因此复习中可配置若干例题,纠正学生的错误,深化对有关概念  相似文献   

19.
在中学三角中,根据二倍角公式,可以推出角α与1/2α的关系式。令tg1/2α=t,可得sinα=(2t)/(1 t~2),cosα=(1-t~2)/(1 t~2),tgα=(2t)/(1-t~2) 利用这三个恒等式可以把各三角函数之间的关系式转化成关于t的代数关系式,这样,在解决三角的许多问题时都很有用处,因此我们通常把它们叫做“万能代换公式”也叫做“万能公式”。一.在求值中的应用例1 求(tgx secx-1) (ctgx cscx-1)。  相似文献   

20.
本文以 2 0 0 4年各地高考三角题为例 ,就题型与策略谈几点拙见 ,以供参考 .1.用公式asinα+bcosα =a2 +b2 sin(α+φ)化为一个角的某个三角函数 .【例 1】 求函数y=sin4 x+2 3sinxcosx-cos4 x的最小正周期和最小值 ,并写出该函数在 [0 ,π]上的递增区间 .解 :y =sin4 x+2 3sinxcosx-cos4 x=3sin2x-cos2x =2sin( 2x-π6)故此函数的周期为π ,最小值为 -2 ,[0 ,π3 ]为递增区间 ,[23 π ,π]为递增区间 .练习 1:求函数y=sinx -12 cosx(x∈R)的最大值 .2 .通过化简转化为以tanα为主元的代数式 .【例 2】 已知tan(α+π4) =2 ,求 12sinαc…  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号